Skip to main content

Advertisement

Log in

On the Performances of Ionic Liquid-Based Electrolytes for Li-NMC Batteries

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Herein, the N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)amide and the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)amide room temperature ionic liquids, combined with the lithium bis(trifluoromethanesulfonyl)amide salt, are investigated as electrolytes for Li/LiNi1/3Mn1/3Co1/3O2 (Li/NMC) batteries. To conduct this study, volumetric properties, ionic conductivity and viscosity of the pure ionic liquids and selected electrolytes were firstly determined as a function of temperature and composition in solution. These data were then compared with those measured in the case of the standard alkyl carbonate-based electrolyte: e.g. the EC/PC/3DMC + 1 mol·L−1 LiPF6. The compatibility of the selected electrolytes with the lithium electrode was then investigated by following the evolution of Li/electrolyte interfaces through impedance measurements. Interestingly, the impedances of the investigated Li/electrolyte interfaces were found to be more than three times lower than that measured using the standard electrolyte. Finally, electrochemical performances of the ionic liquid-based electrolytes were investigated using galvanostatic charge and discharge and cyclic voltammetry of each Li/NMC cell. Using these electrolytes, each tested Li cell reaches up to 145 mA·h·g−1 at C/10 and 110 mA·h·g−1 at C with a coulombic efficiency close to 100 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blomgren, G.E.: Electrolytes for advanced batteries. J. Power Sources 81–82, 112–118 (1999)

    Article  Google Scholar 

  2. Chretien, F., Jones, J., Damas, C., Lemordant, D., Willmann, P., Anouti, M.: Impact of solid electrolyte interphase lithium salts on cycling ability of Li-ion battery: beneficial effect of glymes additives. J. Power Sources 248, 969–977 (2014)

    Article  CAS  Google Scholar 

  3. Wu, S.-L., Zhang, W., Song, X., Shukla, A.K., Liu, G., Battaglia, V., Srinivasan, V.: High rate capability of LiNi1/3Mn1/3Co1/3O2 electrode for Li-ion batteries. J. Electrochem. Soc. 159, A438–A444 (2012)

    Article  CAS  Google Scholar 

  4. Oljaca, M., Blizanac, B., Du Pasquier, A., Sun, Y., Bontchev, R., Suszko, A., Wall, R., Koehlert, K.: Novel LiNi1/3Co1/3Mn1/3O2 cathode morphologies for high power Li-ion batteries. J. Power Sources 248, 729–738 (2014)

    Article  CAS  Google Scholar 

  5. Tsai, W.-Y., Lin, R., Murali, S., Zhang, L.L., McDonough, J.K., Ruoff, R.S., Taberna, P.-L., Gogotsi, Y., Simon, P.: Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C. Nano Energy 2, 403–411 (2013)

    Article  CAS  Google Scholar 

  6. Kim, G.T., Jeong, S.S., Xue, M.Z., Balducci, A., Winter, M., Passerini, S., Alessandrini, F., Appetecchi, G.B.: Development of ionic liquid-based lithium battery prototypes. J. Power Sources 199, 239–246 (2012)

    Article  CAS  Google Scholar 

  7. Niedzicki, L., Karpierz, E., Bitner, A., Kasprzyk, M., Zukowska, G.Z., Marcinek, M., Wieczorek, W.: Optimisation of the lithium-ion cell electrolyte composition through the use of the LiTDI salt. Electrochim. Acta 117, 224–229 (2014)

    Article  CAS  Google Scholar 

  8. Wang, D.Y., Sinha, N.N., Burns, J.C., Aiken, C.P., Petibon, R., Dahn, J.R.: A comparative study of vinylene carbonate and fluoroethylene carbonate additives for LiCoO2/graphite pouch cells. J. Electrochem. Soc. 161, A467–A472 (2014)

    Article  CAS  Google Scholar 

  9. Petibon, R., Henry, E.C., Burns, J.C., Sinha, N.N., Dahn, J.R.: Comparative study of vinyl ethylene carbonate (VEC) and vinylene carbonate (VC) in LiCoO2/graphite pouch cells using high precision coulometry and electrochemical impedance spectroscopy measurements on symmetric cells. J. Electrochem. Soc. 161, A66–A74 (2014)

    Article  CAS  Google Scholar 

  10. Dahbi, M., Ghamouss, F., Anouti, M., Lemordant, D., Tran-Van, F.: Electrochemical lithiation and compatibility of graphite anode using glutaronitrile/dimethyl carbonate mixtures containing LiTFSI as electrolyte. J. Appl. Electrochem. 43, 375–385 (2013)

    Article  CAS  Google Scholar 

  11. Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009)

    Article  CAS  Google Scholar 

  12. Lin, R., Taberna, P.-L., Fantini, S., Presser, V., Pérez, C.R., Malbosc, F., Rupesinghe, N.L., Teo, K.B.K., Gogotsi, Y., Simon, P.: Capacitive energy storage from −50 to 100 °C using an ionic liquid electrolyte. J. Phys. Chem. Lett. 2, 2396–2401 (2011)

    Article  CAS  Google Scholar 

  13. Feng, G., Li, S., Presser, V., Cummings, P.T.: Molecular insights into carbon supercapacitors based on room-temperature ionic liquids. J. Phys. Chem. Lett. 4, 3367–3376 (2013)

    Article  CAS  Google Scholar 

  14. Fernicola, A., Croce, F., Scrosati, B., Watanabe, T., Ohno, H.: LiTFSI–BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries. J. Power Sources 174, 342–348 (2007)

    Article  CAS  Google Scholar 

  15. Mallouki, M., Tran-Van, F., Sarrazin, C., Chevrot, C., Fauvarque, J.F.: Electrochemical storage of polypyrrole–Fe2O3 nanocomposites in ionic liquids. Electrochim. Acta 54, 2992–2997 (2009)

    Article  CAS  Google Scholar 

  16. Ivanov, S., Vlaic, C.A., Du, S., Wang, D., Schaaf, P., Bund, A.: Electrochemical performance of nanoporous Si as anode for lithium ion batteries in alkyl carbonate and ionic liquid-based electrolytes. J. Appl. Electrochem. 44, 159–168 (2013)

    Article  Google Scholar 

  17. Guerfi, A., Dontigny, M., Charest, P., Petitclerc, M., Lagacé, M., Vijh, A., Zaghib, K.: Improved electrolytes for Li-ion batteries: mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. J. Power Sources 195, 845–852 (2010)

    Article  CAS  Google Scholar 

  18. Nadherna, M., Reiter, J., Moskon, J., Dominko, R.: Lithium bis(fluorosulfonyl)amide-PYR14TFSI ionic liquid electrolyte compatible with graphite. J. Power Sources 196, 7700–7706 (2011)

    Article  CAS  Google Scholar 

  19. Ishikawa, M., Sugimoto, T., Kikuta, M., Ishiko, E., Kono, M.: Pure ionic liquid electrolytes compatible with graphitized carbon negative electrode in rechargeable lithium-ion batteries. J. Power Sources 162, 658–662 (2006)

    Article  CAS  Google Scholar 

  20. Holzapfel, M., Jost, C., Novak, P.: Stable cycling of graphite in an ionic liquid based electrolyte. Chem. Com. 18, 2098–2099 (2004)

    Article  Google Scholar 

  21. Lombardo, L., Brutti, S., Navarra, M.S., Panero, S., Reale, P.: Mixtures of ionic liquid–alkylcarbonates for safe lithium-ion batteries. J. Power Sources 227, 8–14 (2013)

    Article  CAS  Google Scholar 

  22. Wang, M., Shan, Z., Tian, J., Yang, K., Liu, X., Liu, H., Zhu, K.: Mixtures of unsaturated imidazolium based ionic liquid and organic carbonate as electrolyte for Li-ion batteries. Electrochim. Acta 95, 301–307 (2013)

    Article  CAS  Google Scholar 

  23. Matsumoto, H., Sakaebe, H., Tatsumi, K., Kikuta, M., Ishiko, E., Kono, M.: Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)amide [FSI]. J. Power Sources 160, 1308–1313 (2006)

    Article  CAS  Google Scholar 

  24. Yoon, H., Howlett, P.C., Best, A.S., Forsyth, M., MacFarlane, D.R.: Fast charge/discharge of Li metal batteries using a ionic liquid electrolyte. J. Electrochem. Soc. 160, A1629–A1637 (2013)

    Article  CAS  Google Scholar 

  25. Wongittharom, N., Lee, T.-C., Hsu, C.-H., Fey, G.T.-K., Huang, K.-P., Chang, J.-K.: Electrochemical performance of rechargeable Li/LiFePO4 cells with ionic liquid electrolyte: effects of Li salt at 25 °C and 50 °C. J. Power Sources 240, 676–682 (2013)

    Article  CAS  Google Scholar 

  26. Reiter, J., Nádherná, M., Dominko, R.: Graphite and LiCo1/3Mn1/3Ni1/3O2 electrodes with piperidinium ionic liquid and lithium bis(fluorosulfonyl)amide for Li-ion batteries. J. Power Sources 205, 402–407 (2012)

    Article  CAS  Google Scholar 

  27. Matsui, Y., Kawaguchi, S., Sugimoto, T., Kikuta, M., Higashizaki, T., Kono, M., Yamagata, M., Ishikawa, M.: Charge-discharge characteristics of a LiNi1/3Mn1/3Co1/3O2 cathode in FSI-based ionic liquids. Electrochem. 80, 808–811 (2012)

    Article  CAS  Google Scholar 

  28. Evans, T., Olson, J., Bhat, V., Lee, S.-H.: Effect of organic solvent addition to PYR13FSI + LiFSI electrolytes on aluminium oxidation and rate performance of Li(Ni1/3Mn1/3Co1/3)O2. J. Power Sources 265, 132–139 (2014)

    Article  CAS  Google Scholar 

  29. Xiang, J., Wu, F., Chen, R., Li, L., Yu, H.: High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries. J. Power Sources 233, 115–120 (2013)

    Article  CAS  Google Scholar 

  30. Schweikert, N., Schweikert, N., Hofmann, A., Schulz, M., Scheuermann, M., Boles, S.T., Hanemann, T., Hahn, H., Indris, S.: Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolyte: investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ 7 Li nuclear magnetic resonance spectroscopy. J. Power Sources 228, 237–243 (2013)

    Article  CAS  Google Scholar 

  31. Guerfi, A., Dontigny, M., Kobayashi, Y., Vijh, A., Zaghib, K.: Investigations on some electrochemical aspects of lithium-ion ionic liquid/gel polymer battery systems. J. Solid State Electrochem. 13, 1003–1014 (2009)

    Article  CAS  Google Scholar 

  32. Dahbi, M., Ghamouss, F., Tran-Van, F., Lemordant, D., Anouti, M.: Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. J. Power Sources 196, 9743–9750 (2011)

    Article  CAS  Google Scholar 

  33. Dahbi, M., Violleau, D., Ghamouss, F., Jacquemin, J., Tran-Van, F., Lemordant, D., Anouti, M.: Interfacial properties of LiTFSI and LiPF6-based electrolytes in binary and ternary mixtures of alkylcarbonates on graphite electrodes and celgard separator. Ind. Eng. Chem. Res. 51, 5240–5245 (2012)

    Article  CAS  Google Scholar 

  34. Qian, Z., Henderson, W.A., Appetecchi, G.B., Montanino, M., Passerini, S.: Physical and electrochemical properties of N-alkyl-N-methylpyrrolidiniumbis(fluorosulfonyl)imide ionic liquids: PY13 FSI and PY14 FSI. J. Phys. Chem. B 112, 13577–13580 (2008)

    Article  Google Scholar 

  35. Johansson, P., Fast, L.E., Matic, A., Appetecchi, G.B., Passerini, S.: The conductivity of pyrrolidinium and sulfonylamide-based ionic liquids: A combined experimental and computational study. J. Power Sources 195, 2074–2076 (2010)

    Article  CAS  Google Scholar 

  36. Lewandowski, A., Olejniczak, A., Galinski, M., Stepniak, I.: Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J. Power Sources 195, 5814–5819 (2010)

    Article  CAS  Google Scholar 

  37. Whitfield, P.S., Abouimrane, A., Davidson, I.J.: In-situ XRD study of the succinonitrile-lithium bis(trifluoromethylsulfonyl)amide (LiTFSI) phase diagram. Solid State Ionics 181, 740–744 (2010)

    Article  CAS  Google Scholar 

  38. Ghamouss, F., Brugere, A., Jacquemin, J.: Physicochemical investigation of adiponitrile-based electrolytes for electrical double layer capacitor. J. Phys. Chem. C 118, 14107–14123 (2014)

    Article  CAS  Google Scholar 

  39. Walden, P.: Organic solvents and ionization media. III. Interior friction and its relation to conductivity. Z. Phys. Chem. 55, 207–246 (1906)

    CAS  Google Scholar 

  40. Schreiner, C., Zugmann, S., Hartl, R., Gores, H.J.: Fractional Walden rule for ionic liquids: Examples from recent measurements and a critique of the so-called ideal KCl line for the walden plot. J. Chem. Eng. Data 55, 1784–1788 (2010)

    Article  CAS  Google Scholar 

  41. Bhatt, A.I., Best, A.S., Huang, J., Hollenkamp, A.F.: Application of the N-propyl-N-methyl-pyrrolidiniumbis(fluorosulfonyl)amide RTIL containing lithium bis(fluorosulfonyl)amide in ionic liquid based lithium batteries. J. Electrochem. Soc. 157, A66–A74 (2010)

    Article  CAS  Google Scholar 

  42. Zhao, H., Park, S.-J., Shi, F., Fu, Y., Battaglia, V., Ross Jr, P.N., Liu, G.: Propylene carbonate (PC)-based electrolytes with high coulombic efficiency for lithium-ion batteries. J. Electrochem. Soc. 161, A194–A200 (2014)

    Article  CAS  Google Scholar 

  43. Howlett, P.C., MacFarlane, D.R., Hollenkamp, A.F.: High lithium metal cycling efficiency in a room-temperature ionic liquid. J. Electrochem. Soc. 7, A97–A101 (2004)

    CAS  Google Scholar 

  44. Howlett, P.C., Brack, N., Hollenkamp, A.F., Forsyth, M., MacFarlane, D.R.: Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium bis(trifluoromethanesulfonyl)amide room-temperature ionic liquid electrolytes. J. Electrochem. Soc. 153, A595–A606 (2006)

    Article  CAS  Google Scholar 

  45. Budi, A., Basile, A., Opletal, G., Hollenkamp, A.F., Best, A.S., Rees, R.J., Bhatt, A.I., O’Mullane, A.P., Russo, S.P.: Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)I mide. J. Phys. Chem. C 116, 19789–19797 (2012)

    Article  CAS  Google Scholar 

  46. Aurbach, D.: Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000)

    Article  CAS  Google Scholar 

  47. Grande, L., Paillard, E., Kim, G.-T., Monaco, S., Passerini, S.: Ionic liquid electrolytes for Li-air batteries: lithium metal cycling. Int. J. Mol. Sci. 15, 8122–8137 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports received from STMicroelectronics and from the APR Blades Project (Région Centre) are gratefully acknowledged. The authors would also like to thank E. Luais for fruitful discussions and M. Bouziani Idrissi for his help during the sample and batteries preparations.

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad Ghamouss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudoy, V., Ghamouss, F., Jacquemin, J. et al. On the Performances of Ionic Liquid-Based Electrolytes for Li-NMC Batteries. J Solution Chem 44, 769–789 (2015). https://doi.org/10.1007/s10953-015-0315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-015-0315-3

Keywords

Navigation