Journal of Solution Chemistry

, Volume 44, Issue 3–4, pp 454–468 | Cite as

Effect of Temperature on Salt–Salt Aqueous Biphasic Systems: Manifestations of Upper Critical Solution Temperature

  • Meghna Dilip
  • Nicholas J. Bridges
  • Héctor Rodríguez
  • Jorge F. B. Pereira
  • Robin D. Rogers


Water-miscible ionic liquids (ILs) may be salted out using kosmotropic salts such as potassium phosphate (K3PO4) to form salt–salt aqueous biphasic systems (ABS). The effect of temperature on these systems has been studied using phase diagrams and it is observed that the degree of binodal shift decreases (requiring lower IL and kosmotropic salt concentrations) with the increase of temperature following the trend [C4mim]Cl > [C4py]Cl > [C4mmim] Cl ~ [N4444]Cl. This trend can be correlated with the decreasing hydrogen bonding abilities of each salt. The phase behavior was also interpreted on the basis of critical solution temperature behavior of pure aqueous ionic liquid solutions. Additionally, the distribution of alcohols in these systems was studied as a function of temperature and it was found that the distribution ratios did not change with changes in temperature. The Gibbs energy of transfer of a methylene group in these systems and correlation to tie-line length was also determined. It was concluded that while the miscibility of alcohols increases in the ILs with increasing temperature, phase divergence in the aqueous biphasic system decreases, and thus these competing forces tend to cancel each other out for small polar molecules. A comparison is provided for the response to temperature in the currently studied salt–salt systems and analogous ABS formed by the addition of hydrophilic polymers to kosmotropic salts (polymer–salt) or other polymers (polymer–polymer).


Aqueous biphasic systems Ionic liquids Upper critical solution temperature Separation 


  1. 1.
    Rogers, R.D., Seddon, K.R.: Ionic liquids—solvents of the future? Science 302, 792–793 (2003)CrossRefGoogle Scholar
  2. 2.
    Niedermeyer, H., Hallett, J.P., Villar-Garcia, I.J., Hunt, P.A., Welton, T.: Mixtures of ionic liquids. Chem. Soc. Rev. 41, 7780–7802 (2012)CrossRefGoogle Scholar
  3. 3.
    Bridges, N.J., Gutowski, K.E., Rogers, R.D.: Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt–salt ABS). Green Chem. 9, 177–183 (2007)CrossRefGoogle Scholar
  4. 4.
    McCrary, P.D., Rogers, R.D.: 1-Ethyl-3-methylimidazolium hexafluorophosphate: from ionic liquid prototype to antitype. Chem. Commun. 49, 6011–6014 (2013)CrossRefGoogle Scholar
  5. 5.
    Dilip, M.: Cradle to grave: How green are ionic liquids? Nanomater Energy 1, 193–206 (2012)CrossRefGoogle Scholar
  6. 6.
    Beijerinck, M.W.: Über eine Eigentümlichkeit der löslichen Stärke. Centr-Bl. f. Bakter. u. Parasitenk. 2, 698–699 (1896)Google Scholar
  7. 7.
    Albertsson, P.A.K.: Partition of Cell Particles and Macromolecules: Separation and Purification of Biomolecules, Cell Organelles, Membranes, and Cells in Aqueous Polymer Two-phase Systems and Their Use in Biochemical Analysis and Biotechnology, 3rd edn. Wiley, New York (1986)Google Scholar
  8. 8.
    Zaslavsky, B.Y.: Aqueous Two-Phase Partitioning: Physical Chemistry and Bioanalytical Applications, CRC Press. Taylor & Francis, New York (1994)Google Scholar
  9. 9.
    Cohen, I., Hiskey, C.F., Oster, G.: Critical phenomena in aqueous solutions of long-chain quaternary ammonium salts. J. Colloid Sci. 9, 243–253 (1954)CrossRefGoogle Scholar
  10. 10.
    Cohen, I., Vassiliades, T.: Critical phenomena in aqueous solutions of long-chain quaternary ammonium salts II Specificity and light scattering properties. J. Phys. Chem. 65, 1774–1781 (1961)CrossRefGoogle Scholar
  11. 11.
    Cohen, I., Vassiliades, T.: Critical phenomena in aqueous solutions of long-chain quaternary ammonium salts III Viscocity, diffusion and charge properties. J. Phys. Chem. 65, 1781–1786 (1961)CrossRefGoogle Scholar
  12. 12.
    Lucas, M., Mauborgne, B.: Coefficients de partage d’un certain nombre d’ions entre deux melanges eau sels non miscibles. J. Inorg. Nucl. Chem. 33, 543–546 (1971)CrossRefGoogle Scholar
  13. 13.
    Gutowski, K.E., Broker, G.A., Willauer, H.D., Huddleston, J.G., Swatloski, R.P., Holbrey, J.D., Rogers, R.D.: Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J. Am. Chem. Soc. 125, 6632–6633 (2003)CrossRefGoogle Scholar
  14. 14.
    He, C., Li, S., Liu, H., Li, K., Liu, F.: Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. J. Chromatogr. A 1082, 143–149 (2005)CrossRefGoogle Scholar
  15. 15.
    Li, S., He, C., Liu, H., Li, K., Liu, F.: Ionic liquid-based aqueous two-phase system, a sample pretreatment procedure prior to high-performance liquid chromatography of opium alkaloids. J. Chromatogr. B 826, 58–62 (2005)CrossRefGoogle Scholar
  16. 16.
    Soto, A., Arce, A., Khoshkbarchi, M.K.: Partitioning of antibiotics in a two-liquid phase system formed by water and a room temperature ionic liquid. Sep. Purif. Technol. 44, 242–246 (2005)CrossRefGoogle Scholar
  17. 17.
    Freire, M.G., Claudio, A.F.M., Araujo, J.M.M., Coutinho, J.A.P., Marrucho, I.M., Lopes, J.N.C., Rebelo, L.P.N.: Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem. Soc. Rev. 41, 4966–4995 (2012)CrossRefGoogle Scholar
  18. 18.
    Neves, C.M.S.S., Ventura, S.P.M., Freire, M.G., Marrucho, I.M., Coutinho, J.A.P.: Evaluation of cation influence on the formation and extraction capability of ionic-liquid-based aqueous biphasic systems. J. Phys. Chem. B 113, 5194–5199 (2009)CrossRefGoogle Scholar
  19. 19.
    Ventura, S.P.M., Neves, C.M.S.S., Freire, M.G., Marrucho, I.M., Oliveira, J., Coutinho, J.A.P.: Evaluation of anion influence on the formation and extraction capability of ionic-liquid-based aqueous biphasic systems. J. Phys. Chem. B 113, 9304–9310 (2009)CrossRefGoogle Scholar
  20. 20.
    Cláudio, A.F.M., Ferreira, A.M., Shariari, S., Freire, M.G., Coutinho, J.A.P.: Critical assessment of the formation of ionic-liquid-based aqueous two-phase systems in acidic media. J. Phys. Chem. B 115, 11145–11153 (2011)CrossRefGoogle Scholar
  21. 21.
    Louros, C.L.S., Cláudio, A.F.M., Neves, C.M.S.S., Freire, M.G., Marrucho, I.M., Pauly, J., Coutinho, J.A.P.: Extraction of biomolecules using phosphonium-based ionic liquids + K3PO4 aqueous biphasic systems. Int. J. Mol. Sci. 11, 1777–1791 (2010)CrossRefGoogle Scholar
  22. 22.
    Ventura, S.P.M., Sousa, S.G., Serafim, L.S., Lima, A.S., Freire, M.G.J., Coutinho, J.A.P.: Ionic liquid based aqueous biphasic systems with controlled pH: the ionic liquid cation effect. J. Chem. Eng. Data 56, 4253–4260 (2011)CrossRefGoogle Scholar
  23. 23.
    Mourão, T., Cláudio, A.F.M., Boal-Palheiros, I., Freire, M.G.J., Coutinho, J.A.P.: Evaluation of the impact of phosphate salts on the formation of ionic-liquid-based aqueous biphasic systems. J. Chem. Thermodyn. 54, 398–405 (2012)CrossRefGoogle Scholar
  24. 24.
    Li, Z., Pei, Y., Liu, L., Wang, J.: (Liquid plus liquid) equilibria for (acetate-based ionic liquids plus inorganic salts) aqueous two-phase systems. J. Chem. Thermodyn. 42, 932–937 (2010)CrossRefGoogle Scholar
  25. 25.
    Han, J., Yu, C., Wang, Y., Xie, X., Yan, Y., Yin, G., Guan, W.: Liquid–liquid equilibria of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and sodium citrate/tartrate/acetate aqueous two-phase systems at 298.15 K: experiment and correlation. Fluid Phase Equi 295, 98–103 (2010)CrossRefGoogle Scholar
  26. 26.
    Passos, H., Ferreira, A.R., Cláudio, A.F.M., Coutinho, J.A.P., Freire, M.G.: Characterization of aqueous biphasic systems composed of ionic liquids and a citrate-based biodegradable salt. Biochem. Eng. J. 67, 68–76 (2012)CrossRefGoogle Scholar
  27. 27.
    Shahriari, S., Neves, C.M.S.S., Freire, M.G., Coutinho, J.A.P.: Role of the Hofmeister series in the formation of ionic-liquid based aqueous biphasics systems. J. Phys. Chem. B 116, 7252–7258 (2012)CrossRefGoogle Scholar
  28. 28.
    Griffin, S.T., Dilip, M., Huddleston, J.G., Spear, S.K., Rogers, R.D.: The opposite effect of temperature on polyethylene glycol-based aqueous biphasic systems versus aqueous biphasic extraction chromatographic resins. J. Chromatogr. B 844, 23–31 (2006)CrossRefGoogle Scholar
  29. 29.
    de Belval, S., le Breton, B., Huddleston, J., Lyddiatt, A.: Influence of temperature upon protein partitioning in poly(ethylene glycol)-salt aqueous two-phase systems close to the critical point with some observations relevant to the partitioning of particles. J. Chromatogr. B 711, 19–29 (1998)CrossRefGoogle Scholar
  30. 30.
    Li, M., Willauer, H.D., Huddleston, J.G., Rogers, R.D.: Temperature effects on polymer-based aqueous biphasic extraction technology in the paper pulping process. Sep. Sci. Tech. 36, 835–847 (2001)CrossRefGoogle Scholar
  31. 31.
    Johansson, H.-O., Karlstrom, G., Tjerneld, F., Haynes, C.A.: Driving forces for phase separation and partitioning in aqueous two-phase systems. J. Chromatogr. B 711, 3–17 (1998)CrossRefGoogle Scholar
  32. 32.
    Thiyagarajan, P., Chaiko, D.J., Hjelm, R.P.: A neutron scattering study of poly(ethylene glycol) in electrolyte solutions. Macromolecules 28, 7730–7736 (1995)CrossRefGoogle Scholar
  33. 33.
    Bae, Y.C., Lambert, S.M., Soane, D.S., Prausnitz, J.M.: Cloud point curves of polymer solutions from thermooptical measurements. Macromolecules 24, 4403–4407 (1991)CrossRefGoogle Scholar
  34. 34.
    Dilip, M., Griffin, S.T., Spear, S.K., Rodriguez, H., Rijksen, C., Rogers, R.D.: Comparison of temperature effects on the salting out of poly(ethylene glycol) versus poly(ethylene oxide)-poly(propylene oxide) random copolymer. Ind. Eng. Chem. Res. 49, 2371–2379 (2010)CrossRefGoogle Scholar
  35. 35.
    Huddleston, J.G., Looney, T.K., Broker, G.A., Griffin, S.T., Spear, S.K., Rogers, R.D.: Comparative behavior of poly(ethylene glycol) hydrogels and poly(ethylene glycol) aqueous biphasic systems. Ind. Eng. Chem. Res. 42, 6088–6095 (2003)CrossRefGoogle Scholar
  36. 36.
    Han, J.A., Pan, R., Xie, X.Q., Wang, Y., Yan, Y.S., Yin, G.W., Guan, W.X.: Liquid–liquid equilibria of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate plus sodium and ammonium citrate aqueous two-phase systems at (298.15, 308.15, and 323.15) K. J. Chem. Eng. Data 55, 3749–3754 (2010)CrossRefGoogle Scholar
  37. 37.
    Han, J., Wang, Y., Li, Y.F., Yu, C.L., Yan, Y.S.: Equilibrium phase behavior of aqueous two-phase systems containing 1-alkyl-3-methylimidazolium tetrafluoroborate and ammonium tartrate at different temperatures: experimental determination and correlation. J. Chem. Eng. Data 56, 3679–3687 (2011)CrossRefGoogle Scholar
  38. 38.
    Wang, Y., Xu, X.H., Yan, Y.S., Han, J., Zhang, Z.L.: Phase behavior for the [Bmim]BF4 aqueous two-phase systems containing ammonium sulfate/sodium carbonate salts at different temperatures: experimental and correlation. Thermochim. Acta 501, 112–118 (2010)CrossRefGoogle Scholar
  39. 39.
    Zafarani-Moattar, M.T., Hamzehzadeh, S.: Phase diagrams for the aqueous two-phase ternary system containing the ionic liquid 1-butyl-3-methylimidazolium bromide and tri-potassium citrate at T = (278.15, 298.15, and 318.15) K. J. Chem. Eng. Data 54, 833–841 (2009)CrossRefGoogle Scholar
  40. 40.
    Zafarani-Moattar, M.T., Hamzehzadeh, S.: Salting-out effect, preferential exclusion, and phase separation in aqueous solutions of chaotropic water-miscible ionic liquids and kosmotropic salts: effects of temperature, anions, and cations. J. Chem. Eng. Data 55, 1598–1610 (2010)CrossRefGoogle Scholar
  41. 41.
    Rowlinson, J.S.: Liquids and Liquid Mixtures, 2nd edn. Butterworths, London (1969)Google Scholar
  42. 42.
    Lang, J.C., Morgan, R.D.: Non-ionic surfactant mixtures. 1. Phase-equilibria in C10e4–H2O and closed-loop coexistence. J. Chem. Phys. 73, 5849–5861 (1980)CrossRefGoogle Scholar
  43. 43.
    Warnheim, T., Bokstrom, J., Williams, Y.: Lower consolute temperature in a non-aqueous surfactant system. Colloid Polym. Sci. 266, 562–565 (1988)CrossRefGoogle Scholar
  44. 44.
    Davies, N.S.A., Gillard, R.D.: The solubility loop of nicotine: water. Transit. Metal Chem. 25, 628–629 (2000)CrossRefGoogle Scholar
  45. 45.
    Kleemeier, M., Schroer, W., Weingartner, H.: Critical behavior of the ionic system n-propyl-tri-n-butylammonium iodide + water near its upper and lower consolute points. J. Mol. Liq. 501, 73–74 (1997)Google Scholar
  46. 46.
    Crosthwaite, J.M., Aki, S., Maginn, E.J., Brennecke, J.F.: Liquid phase behavior of imidazolium-based ionic liquids with alcohols. J. Phys. Chem. B. 108, 5113–5119 (2004)CrossRefGoogle Scholar
  47. 47.
    Domanska, U.: Thermophysical properties and thermodynamic phase behavior of ionic liquids. Thermochim. Acta 448, 19–30 (2006)CrossRefGoogle Scholar
  48. 48.
    Holbrey, J.D., Seddon, K.R.: The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J. Chem. Soc. Dalton Trans. 13, 2133–2140 (1999)CrossRefGoogle Scholar
  49. 49.
    Domanska, U., Marciniak, A.: Phase behaviour of 1-hexyloxymethyl-3-methyl-imidazolium and 1,3-dihexyloxymethyl-imidazolium based ionic liquids with alcohols, water, ketones and hydrocarbons: the effect of cation and anion on solubility. Fluid Phase Equilib. 260, 9–18 (2007)CrossRefGoogle Scholar
  50. 50.
    Domanska, U., Mazurowska, L.: Solubility of 1,3-dialkylimidazolium chloride or hexafluorophosphate or methylsulfonate in organic solvents: effect of the anions on solubility. Fluid Phase Equilib. 221, 73–82 (2004)CrossRefGoogle Scholar
  51. 51.
    Johansson, H.O., Karlstrom, G., Tjerneld, F.: Experimental and theoretical-study of phase-separation in aqueous-solutions of clouding polymers and carboxylic-acids. Macromolecules 26, 4478–4483 (1993)CrossRefGoogle Scholar
  52. 52.
    Variankaval, N.E., Rezac, M.E., Abhiraman, A.S.: The “cold-solutioning” phenomenon in cellulose triacetate–acetone mixtures. J. Appl. Polym. Sci. 90, 1697–1707 (2003)CrossRefGoogle Scholar
  53. 53.
    Galaev, I., Mattiasson, B.: Smart Polymers for Bioseparation and Bioprocessing. CRC Press, Taylor & Francis, London (2001)Google Scholar
  54. 54.
    Hatti-Kaul, R.: Aqueous two-phase systems: methods and protocols. Methods in biotechnology. Humana Press, New Jersey (2000)CrossRefGoogle Scholar
  55. 55.
    Merchuk, J.C., Andrews, B.A., Asenjo, J.A.: Aqueous two-phase systems for protein separation studies on phase inversion. J. Chromatogr. B 711, 285–293 (1998)CrossRefGoogle Scholar
  56. 56.
    Deenadayalu, N., Letcher, T.M., Reddy, P.: Determination of activity coefficients at infinite dilution of polar and nonpolar solutes in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imidate using gas–liquid chromatography at the temperature 303.15 K or 318.15 K. J. Chem. Eng. Data 50, 105–108 (2005)CrossRefGoogle Scholar
  57. 57.
    Doker, M., Gmehling, J.: Measurement and prediction of vapor–liquid equilibria of ternary systems containing ionic liquids. Fluid Phase Equilib. 227, 255–266 (2005)CrossRefGoogle Scholar
  58. 58.
    Riisager, A., Fehrmann, R., Berg, R.W., van Hal, R., Wasserscheid, P.: Thermomorphic phase separation in ionic liquid–organic liquid systems—conductivity and spectroscopic characterization. Phys. Chem. Chem. Phys. 7, 3052–3058 (2005)CrossRefGoogle Scholar
  59. 59.
    Wagner, M., Stanga, O., Schroer, W.: Corresponding states analysis of the critical points in binary solutions of room temperature ionic liquids. Phys. Chem. Chem. Phys. 5, 3943–3950 (2003)CrossRefGoogle Scholar
  60. 60.
    Najdanovic-Visak, V., Esperanca, J.M.S.S., Rebelo, L.P.N., da Ponte, M.N., Guedes, H.J.R., Seddon, K.R., Szydlowski, J.: Phase behaviour of room temperature ionic liquid solutions: an unusually large co-solvent effect in (water plus ethanol). Phys. Chem. Chem. Phys. 4, 1701–1703 (2002)CrossRefGoogle Scholar
  61. 61.
    Willauer, H.D., Huddleston, J.G., Rogers, R.D.: Solute partitioning in aqueous biphasic systems composed of polyethylene glycol and salt: the partitioning of small neutral organic species. Ind. Eng. Chem. Res. 41, 1892–1904 (2002)CrossRefGoogle Scholar
  62. 62.
    Willauer, H.D., Huddleston, J.G., Rogers, R.D.: Solvent properties of aqueous biphasic systems composed of polyethylene glycol and salt characterized by the free energy of transfer of a methylene group between the phases and by a linear solvation energy relationship. Ind. Eng. Chem. Res. 41, 2591–2601 (2002)CrossRefGoogle Scholar
  63. 63.
    Glasbrenner, H., Weingartner, H.: Phase-separation and critical-point of an aqueous-electrolyte solution. J. Phys. Chem. 93, 3378–3379 (1989)CrossRefGoogle Scholar
  64. 64.
    Schott, H., Han, S.K.: Effect of symmetrical tetraalkylammonium salts on cloud point of nonionic surfactants. J. Pharm. Sci. 66, 165–168 (1977)CrossRefGoogle Scholar
  65. 65.
    Dyadin, Y.A., Zhurko, F.V., Aladko, E.Y., Zelenin, Y.M., Gaponenko, L.A.: Clathrate formation in water tetraalkyl ammonium iodide systems at high-pressure. J. Incl. Phenom. 5, 203–210 (1987)CrossRefGoogle Scholar
  66. 66.
    Crosthwaite, J.M., Aki, N.V.K.S., Maginn, E.J., Brennecke, J.F.: Liquid phase behavior of imidazolium-based ionic liquids with alcohols: effect of hydrogen bonding and non-polar interactions. Fluid Phase Equilib. 228–229, 303–309 (2005)CrossRefGoogle Scholar
  67. 67.
    Forciniti, D., Hall, C.K., Kula, M.R.: Influence of polymer molecular-weight and temperature on phase-composition in aqueous 2-phase systems. Fluid Phase Equilib. 61, 243–262 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Meghna Dilip
    • 1
    • 3
  • Nicholas J. Bridges
    • 1
    • 2
  • Héctor Rodríguez
    • 4
  • Jorge F. B. Pereira
    • 1
    • 5
  • Robin D. Rogers
    • 1
  1. 1.Center for Green Manufacturing and Department of ChemistryThe University of AlabamaTuscaloosaUSA
  2. 2.Savannah River National LabAikenUSA
  3. 3.Department of ChemistryWorcester State UniversityWorcesterUSA
  4. 4.Department of Chemical EngineeringUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  5. 5.Department of Bioprocess and Biotechnology, School of Pharmaceutical SciencesUNESP – Universidade Estadual PaulistaAraraquaraBrazil

Personalised recommendations