Advertisement

Journal of Solution Chemistry

, Volume 43, Issue 8, pp 1388–1401 | Cite as

Spectroscopic and Chemometrics Analysis of the Hydrolytic Process of Folpet and Its Interaction with DNA

  • Yepeng Zhang
  • Guowen Zhang
Article

Abstract

Hydrolysis of the pesticide folpet [N-(trichloromethylthio) phthalimide] in aqueous solution in the absence or presence of calf thymus DNA (ctDNA) was investigated using UV–Vis absorption spectroscopy, and the interactions of folpet and its hydrolyzates with ctDNA were determined by fluorescence and circular dichroism spectroscopy, coupled with viscosity and melting temperature measurements. The absorption spectra data was further analyzed by alternate least squares, a chemometrics method, and the concentration profiles of the reacting species (folpet, unstable intermediate, phthalimide and phthalic acid) and their pure component spectra were simultaneously extracted to monitor the hydrolytic process. It was found that the hydrolytic process consists of at least two steps, generation of an unstable intermediate and production of its end hydrolyzates, phthalimide and phthalic acid. Addition of ctDNA significantly affects the hydrolysis of folpet. The results from the competitive binding with intercalator ethidium bromide, ctDNA melting and viscosity measurements, and circular dichroism studies indicate that folpet and the intermediate can intercalate into the double-helix of DNA, phthalic acid is bound to DNA by a partial intercalation, while phthalimide does not show binding to ctDNA. Moreover, the binding of folpet (or the intermediate) and phthalic acid to ctDNA induced structural changes of the DNA.

Keywords

Folpet Calf thymus DNA Hydrolysis Binding mode Spectroscopy Chemometrics 

Notes

Acknowledgments

We are grateful for financial support provided by the National Natural Science Foundation of China (numbers 21167013 and 31060210), the Program of Jiangxi Provincial Department of Science and Technology (20141BBG70092), and the Research Program of State Key Laboratory of Food Science and Technology of Nanchang University (SKLF-ZZB-201305, SKLF-ZZA-201302 and SKLF-KF-201203).

References

  1. 1.
    Gupta, R.C., Spencer-Beach, G.: Natural and endogenous DNA adducts as detected by 32P-postlabeling. Regul. Toxicol. Pharm. 23, 14–21 (1996)CrossRefGoogle Scholar
  2. 2.
    Laouedj, A., Schenk, C., Pfohl-Leszkowicz, A., Keith, G., Schontz, D., Guillermaut, P., Bether, B.: Detection of DNA adducts in declining hop plants grown on fields formerly treated with heptachlor, a persistent insecticide. Environ. Pollut. 90, 409–414 (1995)CrossRefGoogle Scholar
  3. 3.
    Lee, H.U., Shin, H.Y., Lee, J.Y., Song, Y.S., Park, C.H., Kim, S.W.: Quantitative detection of glyphosate by simultaneous analysis of UV spectroscopy and fluorescence using DNA-labeled gold nanoparticles. J. Agric. Food Chem. 58, 12096–12100 (2010)CrossRefGoogle Scholar
  4. 4.
    Ahmadi, F., Jafari, B., Rahimi-Nasrabadi, M., Ghasemi, S., Guanbari, K.: Proposed model for in vitro interaction between fenitrothion and DNA, by using competitive fluorescence 31PNMR, 1HNMR, FT-IR, CD and molecular modeling. Toxicol. In Vitro 27, 641–650 (2013)CrossRefGoogle Scholar
  5. 5.
    Shah, R.G., Lagueux, J., Kapur, S., Levallois, P., Ayoote, P., Tremblay, M., Zee, J., Poirier, G.G.: Determination of genotoxicity of the metabolites of the pesticides Guthion, Sencor, Lorox, Reglone, Daconil and Admire by P-32-postlabeling. Mol. Cell. Biochem. 169, 177–184 (1997)CrossRefGoogle Scholar
  6. 6.
    Zhang, Y.P., Zhang, G.W., Fu, P., Ma, Y.D., Zhou, J.: Study on the interaction of triadimenol with calf thymus DNA by multispectroscopic methods and molecular modeling. Spectrochim. Acta A 96, 1012–1019 (2012)CrossRefGoogle Scholar
  7. 7.
    Zhang, G.W., Hu, X., Pan, J.H.: Spectroscopic studies of the interaction between pirimicarb and calf thymus DNA. Spectrochim. Acta A 78, 687–694 (2011)CrossRefGoogle Scholar
  8. 8.
    Parrilla, P., Vidal, J.L.M., Galera, M.M., Frenich, A.G.: Degradation of fenamiphos and folpet in water. Int. J. Environ. Anal. Chem. 63, 137–145 (1966)CrossRefGoogle Scholar
  9. 9.
    Couch, R.C., Siegel, M.R.: Interaction of captan and folpet with mammalian DNA and histones. Pestic. Biochem. Physiol. 7, 531–546 (1977)CrossRefGoogle Scholar
  10. 10.
    Wang, Y.Y., Xu, J.N., Hu, J.: EPA evaluated pesticides for potential carcinogenicity. Agrochemicals 484, 62–466 (2009)Google Scholar
  11. 11.
    Yamamoto, H., Hada, K., Yamaji, H., Katsuda, T., Ohno, H., Fukuda, H.: Application of regularized alternating least squares and independent component analysis to HPLC-DAD data of Haematococcus pluvialis metabolites. Biochem. Eng. J. 32, 149–156 (2006)CrossRefGoogle Scholar
  12. 12.
    Ni, Y.N., Du, S., Kokot, S.: Interaction between quercetin–copper(II) complex and DNA with the use of the Neutral Red dye fluorophor probe. Anal. Chim. Acta 584, 19–27 (2007)CrossRefGoogle Scholar
  13. 13.
    Zhang, G.W., Fu, P., Wang, L., Hu, M.M.: Molecular Spectroscopic studies of farrerol interaction with calf thymus DNA. J. Agric. Food Chem. 59, 8944–8952 (2011)CrossRefGoogle Scholar
  14. 14.
    Kashanian, S., Dolatabadi, J.E.N.: DNA binding studies of 2-tert-butylhydroquinone (TBHQ) food additive. Food Chem. 116, 743–747 (2009)CrossRefGoogle Scholar
  15. 15.
    Kashanian, S., Khodaei, M.M., Pakravan, P.: Spectroscopic studies on the interaction of isatin with calf thymus DNA. DNA Cell Biol. 29, 639–646 (2010)CrossRefGoogle Scholar
  16. 16.
    Temerk, Y.M., Ibrahim, M.S., Kotb, M., Schuhmann, W.: Interaction of antitumor flavonoids with dsDNA in the absence and presence of Cu(II). Anal. Bioanal. Chem. 405, 3839–3846 (2013)CrossRefGoogle Scholar
  17. 17.
    Kashanian, S., Dolatabadi, J.E.N.: In vitro study of calf thymus DNA interaction with butylated hydroxyanisole. DNA Cell Biol. 28, 535–540 (2009)CrossRefGoogle Scholar
  18. 18.
    Xu, M., Ma, Z.R., Huang, L., Chen, F.J., Zeng, Z.Z.: Spectroscopic studies on the interaction between Pr(III) complex of an ofloxacin derivative and bovine serum albumin or DNA. Spectrochim. Acta A 78, 503–511 (2011)CrossRefGoogle Scholar
  19. 19.
    Tauler, R.: Multivariate curve resolution applied to second order data. Chemom. Intell. Lab. Syst. 30, 133–146 (1995)CrossRefGoogle Scholar
  20. 20.
    Malinowski, E.R.: Factor analysis in chemistry. John Wiley & Sons, New York (2002)Google Scholar
  21. 21.
    Maeder, M.: Evolving factor analysis for the resolution of overlapping chromatographic peaks. Anal. Chem. 59, 527–530 (1987)CrossRefGoogle Scholar
  22. 22.
    Windig, W., Guilment, J.: Interactive self-modeling mixture analysis. Anal. Chem. 63, 1425–1432 (1991)CrossRefGoogle Scholar
  23. 23.
    Ghasemi, J., Ahmadi, S., Ahmad, A.I., Ghobadi, S.: Spectroscopic characterization of thiazole orange-3 DNA interaction. Appl. Biochem. Biotechnol. 149, 9–22 (2008)CrossRefGoogle Scholar
  24. 24.
    Garrido, M., Rius, F.X., Larrechi, M.S.: Multivariate curve resolution–alternating least squares (MCR–ALS) applied to spectroscopic data from monitoring chemical reactions processes. Anal. Bioanal. Chem. 390, 2059–2066 (2008)CrossRefGoogle Scholar
  25. 25.
    Tauler, R., Casassas, E., Izquierdo-Ridorsa, A.: Self-modeling curve resolution in studies of spectrometric titrations of multi-equilibria systems by factor analysis. Anal. Chim. Acta 248, 447–458 (1991)CrossRefGoogle Scholar
  26. 26.
    Wang, Y.X., Ni, Y.N., Kokot, S.: Voltammetric behavior of complexation of salbutamol with calf thymus DNA and its analytical application. Anal. Biochem. 419, 76–80 (2011)CrossRefGoogle Scholar
  27. 27.
    Berthet, A., Bouchard, M., Danuser, B.: Toxicokinetics of captan and folpet biomarkers in orally exposed volunteers. J. Appl. Toxicol. 32, 194–201 (2012)CrossRefGoogle Scholar
  28. 28.
    Bhakta, D., Siva, R.: Morindone, an anthraquinone, intercalates DNA sans toxicity: a spectroscopic and molecular modeling perspective. Appl. Biochem. Biotech. 167, 885–896 (2012)CrossRefGoogle Scholar
  29. 29.
    Xie, H.P., Chu, X., Jiang, J.H., Cui, H., Shen, G.L., Yu, R.Q.: Competitive interactions of adriamycin and ethidium bromide with DNA as studied by full rank parallel factor analysis of fluorescence three-way array data. Spectrochim. Acta A 59, 743–749 (2003)CrossRefGoogle Scholar
  30. 30.
    Hegde, A.H., Prashanth, S.N., Seetharamappa, J.: Interaction of antioxidant flavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods. J. Pharm. Biomed. Anal. 63, 40–46 (2012)CrossRefGoogle Scholar
  31. 31.
    Ihmelsm, H., Otto, D.: Intercalation of organic dye molecules into double-stranded DNA—general principles and recent developments. Top. Curr. Chem. 258, 161–204 (2005)CrossRefGoogle Scholar
  32. 32.
    Bi, S.Y., Zhang, H.Q., Qiao, C.Y.: Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic method. Spectrochim. Acta A 69, 123–129 (2008)CrossRefGoogle Scholar
  33. 33.
    Zhang, G.W., Fu, P., Pan, J.H.: Multispectroscopic studies of paeoniflorin binding to calf thymus DNA in vitro. J. Lumin. 134, 303–309 (2013)CrossRefGoogle Scholar
  34. 34.
    Zhao, P., Huang, J.W., Mei, W.J., He, J., Ji, L.N.: DNA binding and photocleavage specificities of a group of tricationic metalloporphyrins. Spectrochim. Acta A 75, 1108–1114 (2010)CrossRefGoogle Scholar
  35. 35.
    Shen, H.Y., Shao, X.L., Xu, H., Li, J., Pan, S.D.: In vitro study of DNA interaction with trichlorobenzenes by spectroscopic and voltammetric techniques. Int. J. Electrochem. Sci. 6, 532–547 (2011)Google Scholar
  36. 36.
    Chen, Y.M., Liu, Y.J., Li, Q., Wang, K.Z.: pH- and DNA-induced dual molecular light switches based on a novel ruthenium(II) complex. J. Inorg. Biochem. 103, 1395–1404 (2009)CrossRefGoogle Scholar
  37. 37.
    Rajendrakumar, C.S.V., Suryanarayanam, T., Reddy, A.R.: DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Lett. 410, 201–205 (1997)CrossRefGoogle Scholar
  38. 38.
    Kashanian, S., Zeidali, S.H., Omidfar, K., Shahabadi, N.: Multi-spectroscopic DNA interaction studies of sunset yellow food additive. Mol. Biol. Rep. 39, 10045–10051 (2012)CrossRefGoogle Scholar
  39. 39.
    Shahabadi, N., Kashanian, S., Ahmadipour, Z.: DNA binding and gel electrophoresis studies of a new sliver(I) complex containing 2,9-dimethyl-1,10-phenanthroline ligands. DNA Cell Biol. 3, 187–194 (2011)CrossRefGoogle Scholar
  40. 40.
    Zhang, Y., Zhang, G.W., Zhou, X.Y., Li, Y.: Determination of acetamiprid partial-intercalative binding to DNA by use of spectroscopic, chemometrics, and molecular docking techniques. Anal. Bioanal. Chem. 405, 8871–8883 (2013)CrossRefGoogle Scholar
  41. 41.
    Skyrianou, K.C., Psycharis, V., Raptopoulou, C.P., Kessissoglou, D.P., Psomas, G.: Nickel-quinolones interaction. Part 4—Structure and biological evaluation of nickel(II)–enrofloxacin complexes compared to zinc(II) analogues. J. Inorg. Biochem. 105, 63–74 (2011)CrossRefGoogle Scholar
  42. 42.
    Wang, X.L., Chao, H., Li, H., Hong, X.L., Liu, Y.J., Tan, L.F., Ji, L.N.: DNA interactions of cobalt(III) mixed-polypyridyl complexes containing asymmetric ligands. J. Inorg. Biochem. 98, 1143–1150 (2004)CrossRefGoogle Scholar
  43. 43.
    Sahoo, B.K., Ghosh, K.S., Bera, R., Dasgupta, S.: Studies on the interaction of diacetylcurcumin with calf thymus-DNA. Chem. Phys. 351, 163–169 (2008)CrossRefGoogle Scholar
  44. 44.
    Paul, P., Kumar, G.S.: Toxic interaction of thionine to deoxyribonucleic acids: elucidation of the sequence specificity of binding with polynucleotides. J. Hazard. Mater. 184, 620–626 (2010)CrossRefGoogle Scholar
  45. 45.
    Xu, X.Y., Wang, D.D., Sun, X.J., Zeng, S.Y., Li, L.W., Sun, D.Z.: Thermodynamic and spectrographic studies on the interactions of ct-DNA with 5-fluorouracil and tegafur. Thermochim. Acta 493, 30–36 (2009)CrossRefGoogle Scholar
  46. 46.
    Jangir, D.K., Dey, S.K., Kundu, S., Mehrotra, R.: Assessment of amsacrine binding with DNA using UV–visible, circular dichroism and Raman spectroscopic techniques. J. Photochem. Photobiol. B 114, 38–43 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina

Personalised recommendations