Skip to main content
Log in

Spectroscopic and Chemometrics Analysis of the Hydrolytic Process of Folpet and Its Interaction with DNA

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Hydrolysis of the pesticide folpet [N-(trichloromethylthio) phthalimide] in aqueous solution in the absence or presence of calf thymus DNA (ctDNA) was investigated using UV–Vis absorption spectroscopy, and the interactions of folpet and its hydrolyzates with ctDNA were determined by fluorescence and circular dichroism spectroscopy, coupled with viscosity and melting temperature measurements. The absorption spectra data was further analyzed by alternate least squares, a chemometrics method, and the concentration profiles of the reacting species (folpet, unstable intermediate, phthalimide and phthalic acid) and their pure component spectra were simultaneously extracted to monitor the hydrolytic process. It was found that the hydrolytic process consists of at least two steps, generation of an unstable intermediate and production of its end hydrolyzates, phthalimide and phthalic acid. Addition of ctDNA significantly affects the hydrolysis of folpet. The results from the competitive binding with intercalator ethidium bromide, ctDNA melting and viscosity measurements, and circular dichroism studies indicate that folpet and the intermediate can intercalate into the double-helix of DNA, phthalic acid is bound to DNA by a partial intercalation, while phthalimide does not show binding to ctDNA. Moreover, the binding of folpet (or the intermediate) and phthalic acid to ctDNA induced structural changes of the DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gupta, R.C., Spencer-Beach, G.: Natural and endogenous DNA adducts as detected by 32P-postlabeling. Regul. Toxicol. Pharm. 23, 14–21 (1996)

    Article  CAS  Google Scholar 

  2. Laouedj, A., Schenk, C., Pfohl-Leszkowicz, A., Keith, G., Schontz, D., Guillermaut, P., Bether, B.: Detection of DNA adducts in declining hop plants grown on fields formerly treated with heptachlor, a persistent insecticide. Environ. Pollut. 90, 409–414 (1995)

    Article  CAS  Google Scholar 

  3. Lee, H.U., Shin, H.Y., Lee, J.Y., Song, Y.S., Park, C.H., Kim, S.W.: Quantitative detection of glyphosate by simultaneous analysis of UV spectroscopy and fluorescence using DNA-labeled gold nanoparticles. J. Agric. Food Chem. 58, 12096–12100 (2010)

    Article  CAS  Google Scholar 

  4. Ahmadi, F., Jafari, B., Rahimi-Nasrabadi, M., Ghasemi, S., Guanbari, K.: Proposed model for in vitro interaction between fenitrothion and DNA, by using competitive fluorescence 31PNMR, 1HNMR, FT-IR, CD and molecular modeling. Toxicol. In Vitro 27, 641–650 (2013)

    Article  CAS  Google Scholar 

  5. Shah, R.G., Lagueux, J., Kapur, S., Levallois, P., Ayoote, P., Tremblay, M., Zee, J., Poirier, G.G.: Determination of genotoxicity of the metabolites of the pesticides Guthion, Sencor, Lorox, Reglone, Daconil and Admire by P-32-postlabeling. Mol. Cell. Biochem. 169, 177–184 (1997)

    Article  CAS  Google Scholar 

  6. Zhang, Y.P., Zhang, G.W., Fu, P., Ma, Y.D., Zhou, J.: Study on the interaction of triadimenol with calf thymus DNA by multispectroscopic methods and molecular modeling. Spectrochim. Acta A 96, 1012–1019 (2012)

    Article  CAS  Google Scholar 

  7. Zhang, G.W., Hu, X., Pan, J.H.: Spectroscopic studies of the interaction between pirimicarb and calf thymus DNA. Spectrochim. Acta A 78, 687–694 (2011)

    Article  Google Scholar 

  8. Parrilla, P., Vidal, J.L.M., Galera, M.M., Frenich, A.G.: Degradation of fenamiphos and folpet in water. Int. J. Environ. Anal. Chem. 63, 137–145 (1966)

    Article  Google Scholar 

  9. Couch, R.C., Siegel, M.R.: Interaction of captan and folpet with mammalian DNA and histones. Pestic. Biochem. Physiol. 7, 531–546 (1977)

    Article  CAS  Google Scholar 

  10. Wang, Y.Y., Xu, J.N., Hu, J.: EPA evaluated pesticides for potential carcinogenicity. Agrochemicals 484, 62–466 (2009)

    Google Scholar 

  11. Yamamoto, H., Hada, K., Yamaji, H., Katsuda, T., Ohno, H., Fukuda, H.: Application of regularized alternating least squares and independent component analysis to HPLC-DAD data of Haematococcus pluvialis metabolites. Biochem. Eng. J. 32, 149–156 (2006)

    Article  CAS  Google Scholar 

  12. Ni, Y.N., Du, S., Kokot, S.: Interaction between quercetin–copper(II) complex and DNA with the use of the Neutral Red dye fluorophor probe. Anal. Chim. Acta 584, 19–27 (2007)

    Article  CAS  Google Scholar 

  13. Zhang, G.W., Fu, P., Wang, L., Hu, M.M.: Molecular Spectroscopic studies of farrerol interaction with calf thymus DNA. J. Agric. Food Chem. 59, 8944–8952 (2011)

    Article  CAS  Google Scholar 

  14. Kashanian, S., Dolatabadi, J.E.N.: DNA binding studies of 2-tert-butylhydroquinone (TBHQ) food additive. Food Chem. 116, 743–747 (2009)

    Article  CAS  Google Scholar 

  15. Kashanian, S., Khodaei, M.M., Pakravan, P.: Spectroscopic studies on the interaction of isatin with calf thymus DNA. DNA Cell Biol. 29, 639–646 (2010)

    Article  CAS  Google Scholar 

  16. Temerk, Y.M., Ibrahim, M.S., Kotb, M., Schuhmann, W.: Interaction of antitumor flavonoids with dsDNA in the absence and presence of Cu(II). Anal. Bioanal. Chem. 405, 3839–3846 (2013)

    Article  CAS  Google Scholar 

  17. Kashanian, S., Dolatabadi, J.E.N.: In vitro study of calf thymus DNA interaction with butylated hydroxyanisole. DNA Cell Biol. 28, 535–540 (2009)

    Article  CAS  Google Scholar 

  18. Xu, M., Ma, Z.R., Huang, L., Chen, F.J., Zeng, Z.Z.: Spectroscopic studies on the interaction between Pr(III) complex of an ofloxacin derivative and bovine serum albumin or DNA. Spectrochim. Acta A 78, 503–511 (2011)

    Article  Google Scholar 

  19. Tauler, R.: Multivariate curve resolution applied to second order data. Chemom. Intell. Lab. Syst. 30, 133–146 (1995)

    Article  CAS  Google Scholar 

  20. Malinowski, E.R.: Factor analysis in chemistry. John Wiley & Sons, New York (2002)

    Google Scholar 

  21. Maeder, M.: Evolving factor analysis for the resolution of overlapping chromatographic peaks. Anal. Chem. 59, 527–530 (1987)

    Article  CAS  Google Scholar 

  22. Windig, W., Guilment, J.: Interactive self-modeling mixture analysis. Anal. Chem. 63, 1425–1432 (1991)

    Article  CAS  Google Scholar 

  23. Ghasemi, J., Ahmadi, S., Ahmad, A.I., Ghobadi, S.: Spectroscopic characterization of thiazole orange-3 DNA interaction. Appl. Biochem. Biotechnol. 149, 9–22 (2008)

    Article  CAS  Google Scholar 

  24. Garrido, M., Rius, F.X., Larrechi, M.S.: Multivariate curve resolution–alternating least squares (MCR–ALS) applied to spectroscopic data from monitoring chemical reactions processes. Anal. Bioanal. Chem. 390, 2059–2066 (2008)

    Article  CAS  Google Scholar 

  25. Tauler, R., Casassas, E., Izquierdo-Ridorsa, A.: Self-modeling curve resolution in studies of spectrometric titrations of multi-equilibria systems by factor analysis. Anal. Chim. Acta 248, 447–458 (1991)

    Article  CAS  Google Scholar 

  26. Wang, Y.X., Ni, Y.N., Kokot, S.: Voltammetric behavior of complexation of salbutamol with calf thymus DNA and its analytical application. Anal. Biochem. 419, 76–80 (2011)

    Article  CAS  Google Scholar 

  27. Berthet, A., Bouchard, M., Danuser, B.: Toxicokinetics of captan and folpet biomarkers in orally exposed volunteers. J. Appl. Toxicol. 32, 194–201 (2012)

    Article  CAS  Google Scholar 

  28. Bhakta, D., Siva, R.: Morindone, an anthraquinone, intercalates DNA sans toxicity: a spectroscopic and molecular modeling perspective. Appl. Biochem. Biotech. 167, 885–896 (2012)

    Article  CAS  Google Scholar 

  29. Xie, H.P., Chu, X., Jiang, J.H., Cui, H., Shen, G.L., Yu, R.Q.: Competitive interactions of adriamycin and ethidium bromide with DNA as studied by full rank parallel factor analysis of fluorescence three-way array data. Spectrochim. Acta A 59, 743–749 (2003)

    Article  Google Scholar 

  30. Hegde, A.H., Prashanth, S.N., Seetharamappa, J.: Interaction of antioxidant flavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods. J. Pharm. Biomed. Anal. 63, 40–46 (2012)

    Article  CAS  Google Scholar 

  31. Ihmelsm, H., Otto, D.: Intercalation of organic dye molecules into double-stranded DNA—general principles and recent developments. Top. Curr. Chem. 258, 161–204 (2005)

    Article  Google Scholar 

  32. Bi, S.Y., Zhang, H.Q., Qiao, C.Y.: Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic method. Spectrochim. Acta A 69, 123–129 (2008)

    Article  Google Scholar 

  33. Zhang, G.W., Fu, P., Pan, J.H.: Multispectroscopic studies of paeoniflorin binding to calf thymus DNA in vitro. J. Lumin. 134, 303–309 (2013)

    Article  CAS  Google Scholar 

  34. Zhao, P., Huang, J.W., Mei, W.J., He, J., Ji, L.N.: DNA binding and photocleavage specificities of a group of tricationic metalloporphyrins. Spectrochim. Acta A 75, 1108–1114 (2010)

    Article  Google Scholar 

  35. Shen, H.Y., Shao, X.L., Xu, H., Li, J., Pan, S.D.: In vitro study of DNA interaction with trichlorobenzenes by spectroscopic and voltammetric techniques. Int. J. Electrochem. Sci. 6, 532–547 (2011)

    CAS  Google Scholar 

  36. Chen, Y.M., Liu, Y.J., Li, Q., Wang, K.Z.: pH- and DNA-induced dual molecular light switches based on a novel ruthenium(II) complex. J. Inorg. Biochem. 103, 1395–1404 (2009)

    Article  CAS  Google Scholar 

  37. Rajendrakumar, C.S.V., Suryanarayanam, T., Reddy, A.R.: DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Lett. 410, 201–205 (1997)

    Article  CAS  Google Scholar 

  38. Kashanian, S., Zeidali, S.H., Omidfar, K., Shahabadi, N.: Multi-spectroscopic DNA interaction studies of sunset yellow food additive. Mol. Biol. Rep. 39, 10045–10051 (2012)

    Article  CAS  Google Scholar 

  39. Shahabadi, N., Kashanian, S., Ahmadipour, Z.: DNA binding and gel electrophoresis studies of a new sliver(I) complex containing 2,9-dimethyl-1,10-phenanthroline ligands. DNA Cell Biol. 3, 187–194 (2011)

    Article  Google Scholar 

  40. Zhang, Y., Zhang, G.W., Zhou, X.Y., Li, Y.: Determination of acetamiprid partial-intercalative binding to DNA by use of spectroscopic, chemometrics, and molecular docking techniques. Anal. Bioanal. Chem. 405, 8871–8883 (2013)

    Article  CAS  Google Scholar 

  41. Skyrianou, K.C., Psycharis, V., Raptopoulou, C.P., Kessissoglou, D.P., Psomas, G.: Nickel-quinolones interaction. Part 4—Structure and biological evaluation of nickel(II)–enrofloxacin complexes compared to zinc(II) analogues. J. Inorg. Biochem. 105, 63–74 (2011)

    Article  CAS  Google Scholar 

  42. Wang, X.L., Chao, H., Li, H., Hong, X.L., Liu, Y.J., Tan, L.F., Ji, L.N.: DNA interactions of cobalt(III) mixed-polypyridyl complexes containing asymmetric ligands. J. Inorg. Biochem. 98, 1143–1150 (2004)

    Article  CAS  Google Scholar 

  43. Sahoo, B.K., Ghosh, K.S., Bera, R., Dasgupta, S.: Studies on the interaction of diacetylcurcumin with calf thymus-DNA. Chem. Phys. 351, 163–169 (2008)

    Article  CAS  Google Scholar 

  44. Paul, P., Kumar, G.S.: Toxic interaction of thionine to deoxyribonucleic acids: elucidation of the sequence specificity of binding with polynucleotides. J. Hazard. Mater. 184, 620–626 (2010)

    Article  CAS  Google Scholar 

  45. Xu, X.Y., Wang, D.D., Sun, X.J., Zeng, S.Y., Li, L.W., Sun, D.Z.: Thermodynamic and spectrographic studies on the interactions of ct-DNA with 5-fluorouracil and tegafur. Thermochim. Acta 493, 30–36 (2009)

    Article  CAS  Google Scholar 

  46. Jangir, D.K., Dey, S.K., Kundu, S., Mehrotra, R.: Assessment of amsacrine binding with DNA using UV–visible, circular dichroism and Raman spectroscopic techniques. J. Photochem. Photobiol. B 114, 38–43 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support provided by the National Natural Science Foundation of China (numbers 21167013 and 31060210), the Program of Jiangxi Provincial Department of Science and Technology (20141BBG70092), and the Research Program of State Key Laboratory of Food Science and Technology of Nanchang University (SKLF-ZZB-201305, SKLF-ZZA-201302 and SKLF-KF-201203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, G. Spectroscopic and Chemometrics Analysis of the Hydrolytic Process of Folpet and Its Interaction with DNA. J Solution Chem 43, 1388–1401 (2014). https://doi.org/10.1007/s10953-014-0211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0211-2

Keywords

Navigation