Advertisement

Journal of Solution Chemistry

, Volume 43, Issue 7, pp 1259–1269 | Cite as

Measurement and Correlation of Excess Molar Enthalpy of Binary Mixtures Containing Butyl Acetate + 1-Alkanols (C1–C6) at 298.15 K

  • Khatereh Khanlarzadeh
  • Hossein Iloukhani
Article

Abstract

Excess molar enthalpies, ∆H m E , for the binary mixtures of butyl acetate + 1-alkanols, namely (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol), were measured over the whole range of composition at 298.15 K using a Parr 1455 solution calorimeter. The excess partial molar enthalpies, ∆H m,i E , were calculated from the experimental excess molar enthalpies using the Redlich–Kister polynomial equation. The sign of ∆H m E for all systems are positive because of the disruption of hydrogen bonding and dipole–dipole interactions in the alkanols and esters, respectively. The magnitude of the ∆H m E values increases with increasing alkyl chain length. The behavior of ∆H m E was analyzed in terms of the length of the alkanol chain, the nature and type of intermolecular interactions and the balance between positive and negative effects on deviations from ideality. The experimental excess molar enthalpy data have also been correlated using the Redlich–Kister and SSF equations and two local composition models (UNIQUAC and NRTL).

Keywords

Excess molar enthalpy Butyl acetate 1-Alkanols SSF equation UNIQUAC NRTL 

List of symbols

Ak

Adjustable parameters of Redlich–Kister equation

Ai, Bi

Adjustable parameters of SSF equation

Δu12, Δu21

Adjustable parameters contained in the UNIQUAC model

Δg12, Δg21

Interaction energy parameters in the NRTL model

α12

Nonrandomness parameter in the NRTL model

HmE

Excess molar enthalpy

Hm,iE

Excess partial molar enthalpy

ρ

Density

nD

Refractive index

R

Universal gas constant

T

Kelvin temperature

xi

Mole fraction of component i

q

Structural parameters in the UNIQUAC model

σ

Standard deviation

Notes

Acknowledgments

The authors would like to thank the Bu-Ali Sina University for providing the necessary facilities to carry out the research.

References

  1. 1.
    Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid Phase Equilibria, 3rd edn. Prentice-Hall PTR, Upper Saddle River (1999)Google Scholar
  2. 2.
    Iloukhani, H., Khanlarzadeh, K.: Volumetric properties for binary and ternary systems consist of 1-chlorobutane, n-butylamine and isobutanol at 298.15 K and ambient pressure with application of the Prigogine–Flory–Patterson theory (PFP) and ERAS-Model. Thermochim. Acta 502, 77–84 (2010)CrossRefGoogle Scholar
  3. 3.
    Khanlarzadeh, K., Iloukhani, H.: Application of ERAS-Model and Prigogine–Flory–Patterson theory to excess molar volumes for ternary mixtures of 2-chlorobutane (1) + butylacetate (2) + isobutanol (3) at T = 298.15 K. J. Chem. Thermodyn. 43, 1583–1590 (2011)CrossRefGoogle Scholar
  4. 4.
    Iloukhani, H., Khanlarzadeh, K.: Physicochemical properties of quaternary systems and comparison of different geometrical models. J. Chem. Eng. Data 11, 4244–4252 (2011)CrossRefGoogle Scholar
  5. 5.
    Iloukhani, H., Zarei, H.A.: Excess molar enthalpies of N, N-dimethylformamide + alkan-1-ols (C1–C6) at 298.15 K. J. Chem. Eng. Data 47, 195–197 (2002)CrossRefGoogle Scholar
  6. 6.
    Iloukhani, H., Fattahi, M.: Correlation of excess molar enthalpies of cyclopentanone (1) + 1-alkanols (C1–C5) (2) by Peng–Robinson–Stryjek–Vera equation of state and ERAS-model. J. Mol. Liq. 171, 37–42 (2012)CrossRefGoogle Scholar
  7. 7.
    Khanlarzadeh, K., Iloukhani, H.: Experimental and theoretical study on excess molar enthalpy of binary mixtures containing isobutanol (1) + alkan-1-ols (C1–C4) (2) at T = 298.15 K. J. Mol. Liq. 187, 24–29 (2013)CrossRefGoogle Scholar
  8. 8.
    Gao, H., Li, S., Yan, W.: Excess molar enthalpies of ethylacetoacetate + (methanol, + ethanol, + 1-propanol, and + 2-propanol) at T = (298.15, 313.15 and 328.15) K, p = (0.1 and 10.0 MPa). Fluid Phase Eqilib. 268, 34–38 (2008)CrossRefGoogle Scholar
  9. 9.
    Bravo-Sanchez, M.G., Iglesias-Silva, G.A., Estrada-Baltazar, A., Hall, K.R.: Densities and viscosities of binary mixtures of n-butanol with 2-butanol, isobutanol, and tert-butanol from (303.15 to 343.15) K. J. Chem. Eng. Data 55, 2310–2315 (2010)CrossRefGoogle Scholar
  10. 10.
    Sheu, Y.W., Tu, C.H.: Densities, viscosities, refractive indices, and surface tensions for 12 flavor esters from T = 288.15 K to T = 358.15 K. J. Chem. Eng. Data 50, 1706–1710 (2005)CrossRefGoogle Scholar
  11. 11.
    Matsuo, H., Tu, C.H., Wong, D.C.Y., Sawamura, S., Taniguchi, Y., Koga, Y.J.: Excess partial molar enthalpy of 1-propanol in 1-propanol–NaCl–H2O at 25°C: the effect of NaCl on molecular organization of H2O. Phys. Chem. B 103, 2981–2983 (1999)CrossRefGoogle Scholar
  12. 12.
    Westh, P., Koga, Y.: Intermolecular interactions in 2-butoxyethanol–DMSO–H2O. J. Phys. Chem. 100, 433–438 (1996)CrossRefGoogle Scholar
  13. 13.
    Matthew, T.P., Koga, Y.: Interactions in 1-propanol-(1,2- and 1,3-) propanediol–H2O: the effect of hydrophobic vs hydrophilic moiety on the molecular organization of H2O. J. Phys. Chem. B 106, 7090–7095 (2002)Google Scholar
  14. 14.
    Redlich, O.J., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)CrossRefGoogle Scholar
  15. 15.
    Rogalsky, M., Malanowski, S.: A new equation for correlation of vapour–liquid equilibrium data of strongly non-ideal mixtures. Fluid Phase Equilib. 1, 137–152 (1977)CrossRefGoogle Scholar
  16. 16.
    Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)CrossRefGoogle Scholar
  17. 17.
    Renon, H., Prausnitz, J.M.: Vapor–liquid equilibrium. XI. A new expression for the excess free energy of mixing. AIChE J. 14, 135–144 (1968)CrossRefGoogle Scholar
  18. 18.
    Riddick, J.A., Bunger, W.B., Sakano, T.K.: Organic Solvents, 3rd edn. Wiley, New York (1970)Google Scholar
  19. 19.
    Landgren, M., McEachern, D., Olofsson, Q., Randzio, S., Sunner, S.: Evaluation of excess enthalpies from flow-calorimetric measurements of enthalpies of dilution using local approximation by polynomials. J. Chem. Thermodyn. 10, 847–854 (1978)CrossRefGoogle Scholar
  20. 20.
    Checoni, R.F., Francesconi, A.Z.: Measurement and correlation of excess molar enthalpy at various temperatures acetonitrile + diethylamine or s-butylamine mixtures. J. Therm. Anal. Calorim. 80, 295–301 (2005)CrossRefGoogle Scholar
  21. 21.
    Venkatesulu, D., Prabhakara, M.V., Veerana, D.R.: Excess enthalpies of 2-alkoxyethanols with trichloroethylene and tetrachloroethylene at 298.15 K. Thermochim. Acta 242, 33–39 (1994)CrossRefGoogle Scholar
  22. 22.
    MacMillan, W.G., Mayer, J.E.: Statistical thermodynamics of multicomponents systems. J. Chem. Phys. 48, 675–690 (1945)Google Scholar
  23. 23.
    Yan, X.H., Wang, Q., Chen, G.H., Han, S.J.: Azeotropes at elevated pressures for systems involving cyclohexane, 2-propanol, ethyl acetate, and butanone. J. Chem. Eng. Data 46, 1235–1238 (2001)CrossRefGoogle Scholar
  24. 24.
    Wang, F.A., Chen, H.S., Zhu, J.Q., Song, J.C., Wang, Z.C.: Estimation of excess enthalpy for binary systems. J. Chem. Eng. 85, 235–243 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of ChemistryBu-Ali Sina UniversityHamedanIran

Personalised recommendations