Journal of Solution Chemistry

, Volume 43, Issue 7, pp 1218–1231 | Cite as

Competitive 7Li NMR Study on the Mn2+, Zn2+ and Cd2+ Complexes of Two New Branched Hexadentate (N6) Amines Containing the Pyridine Moiety in Nitromethane and Acetonitrile Solutions

  • Hassan Keypour
  • Mohammad Hasan Zebarjadian
  • Majid Rezaeivala
  • Mojtaba Shamsipur
  • Hamid Reza Bijanzadeh


Lithium-7 NMR spectroscopy was used to investigate the stoichiometry and stability of a Li+ complex with two new branched amines, 4,7-bis(2-pyridylmethyl)-4,7-diazadecane-1,10-diamine (L1) and 4,8-bis(2-pyridylmethyl)-4,8-diazaundecane-1,11-diamine (L2), in acetonitrile and nitromethane. A competitive 7Li NMR method was also employed to probe the complexation of Mn2+, Zn2+ and Cd2+ ions with L1 and L2 in the same solvent systems. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data with an equation that relates the observed chemical shifts to the formation constant. In both solvents, the stability of the resulting 1:1 complexes was found to vary in the order Cd2+ > Zn2+ > Mn2+ > Li+.


Competitive 7Li NMR Complexation Nonaqueous solvent Nitromethane Acetonitrile Pyridine moiety Hexadentate (N6) amines 



We are grateful to the Faculty of Chemistry of Bu-Ali Sina University, Ministry of Science, Research and Technology of Iran for financial support.


  1. 1.
    Bianchi, A., Micheloni, M., Paoletti, P.: Thermodynamic aspects of the polyaza cycloalkane complexes with cations and anions. Coord. Chem. Rev. 17, 110–113 (1991)Google Scholar
  2. 2.
    Lehn, J.M.: Cryptates, a new class of cation complexes. Angew. Chem. Int. Ed. Engl. 9, 175–180 (1970)CrossRefGoogle Scholar
  3. 3.
    Huston, M.E., Akkaya, E.U., Czarnik, A.W.: Chelation enhanced fluorescence detection of non-metal ions. J. Am. Chem. Soc. 111, 8735–8737 (1989)CrossRefGoogle Scholar
  4. 4.
    Reglinski, J., Morris, S., Stevenson, D.E.: Supporting conformational change at metal centres. Part 1: octahedral systems. Polyhedron 21, 2167–2174 (2002)CrossRefGoogle Scholar
  5. 5.
    Taylor, M.K., Reglinski, J., Wallace, D.: Coordination geometry of tetradentate Schiff-base nickel complexes: the effects of donors, backbone length and hydrogenation. Polyhedron 23, 3201–3210 (2004)CrossRefGoogle Scholar
  6. 6.
    Ulku, D., Ercan, F., Atakol, O., Dincer, F.N.: Bis{(-acetato)[-bis (salicylidene)-1,3-propanediaminato](dimethyl sulfoxide) nickel(II)}. Acta Cryst. Sect. C 53, 1056–1057 (1997)CrossRefGoogle Scholar
  7. 7.
    Kara, H., Elerman, Y., Elmali, A.: Synthesis, crystal structure and spectroscopic properties of a dinuclear nickel(II) complex bridged by an alkoxide and a μ-pyrazolate ligand. Z. Naturforsch. 58b, 955–958 (2003)Google Scholar
  8. 8.
    Srinivasan, R., Sougandi, I., Venkatesan, R., Sambasiv, P.: Synthesis and room temperature single crystal EPR studies of a dinickel complex having an {Ni2(m-phenoxide)2}2+ unit supported by a macrocyclic ligand environment [Ni2(L)2(OClO3)2] [L = 2-[(4-methyl-pyridin-2-ylimino)-methyl]-phenol]. Proc. Indian Acad. Sci. Chem. Sci. 115, 91–102 (2003)CrossRefGoogle Scholar
  9. 9.
    Inamoto, K., Kuroda, J.I., Hiroya, K., Noda, Y., Watanabe, M., Sakamoto, T.: Synthesis and catalytic activity of a pincer-type bis(imidazolin-2-ylidene) nickel(II) complex. Organometallics 25, 3095–3100 (2006)CrossRefGoogle Scholar
  10. 10.
    Cohen, S.S.: Introduction to the polyamines. Prentice-Hall, New York (1971)Google Scholar
  11. 11.
    Paoletti, P., Fabbrizzi, L., Barbucci, R.: Thermochemistry of metal–polyamine complexes. Inorg. Chim. Acta Rev. 7, 43–68 (1973)CrossRefGoogle Scholar
  12. 12.
    Tabor, C.W., Tabor, H.: 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu. Rev. Biochem. 45, 285–306 (1976)CrossRefGoogle Scholar
  13. 13.
    Garner, C.S., House, D.A.: Amine complexes of chromium(III). Trans. Met. Chem. 6, 259–295 (1970)Google Scholar
  14. 14.
    Chang, J.C.: Recent advances in synthesis of amine complexes of chromium(III). J. Ind. Chem. Soc. 54, 98–101 (1977)Google Scholar
  15. 15.
    House, D.A.: Comprehensive coordination chemistry, vol. 2, pp. 23–60. Pergamon Press, Oxford (1987)Google Scholar
  16. 16.
    Yoshikawa, Y., Yamasaki, K.: Isomerism of metal complexes containing multidenate ligands. IV. Cobalt(III) complex of linear pentaethylenehexamine. Bull. Chem. Soc. Jpn 46, 3448–3452 (1973)CrossRefGoogle Scholar
  17. 17.
    Izatt, R.M., Bradshaw, J.S., Nielsen, S.A., Lamb, J.D., Christensen, J.J., Sen, D.: Thermodynamic and kinetic data for cation–macrocycle interaction. Chem. Rev. 85, 271–339 (1985)CrossRefGoogle Scholar
  18. 18.
    Izatt, R.M., Pawlak, K.J., Bradshaw, S., Bruening, R.L.: Thermodynamic and kinetic data for macrocycle interactions with cations. Chem. Rev. 91, 1721–2085 (1991)CrossRefGoogle Scholar
  19. 19.
    Popov, A.I.: In: Melson, G.A. (ed.) Characterization of solutes in nonaqueous solvents, Chap. 9, Plenum, New York (1978)Google Scholar
  20. 20.
    Popov, A.I.: Multinuclear NMR studies of alkali ions in nonaqueous solvents. Pure Appl. Chem. 51, 101–110 (1979)CrossRefGoogle Scholar
  21. 21.
    Kaplan, J.I., Frankel, G.: NMR of chemically exchanging systems. Academic Press, New York (1980)Google Scholar
  22. 22.
    Popov, A.I., Hallenga, K.: Modern NMR techniques and their application in chemistry. Practical spectroscopy series, vol. 11. Marcel Dekker, New York (1990)Google Scholar
  23. 23.
    Detellier, C., Graves, H.P.: In: Buncel, E., Jones, J.R. (eds.) Isotopes in the Physical and Biomedical Sciences; Isotopic Applications in NMR Studies. Vol. 2, Chap. 4. Elsevier, Amsterdam (1991)Google Scholar
  24. 24.
    Karkhaneei, E., Afkhami, A., Shamsipur, M.: Nuclear magnetic resonance studies of sodium ion complexes with several crown ethers in binary acetonitrile dimethylsulfoxide mixtures. Polyhedron 15, 1989–1994 (1996)CrossRefGoogle Scholar
  25. 25.
    Karkhaneei, E., Afkhami, A., Shamsipur, M.: Nuclear magnetic resonance study of lithium ion complexes with several crown ethers in binary acetonitrile nitromethane mixtures. J. Coord. Chem. 39, 33–42 (1996)CrossRefGoogle Scholar
  26. 26.
    Karkhaneei, E., Zolgharnein, J., Afkhami, A., Shamsipur, M.: Lithium-7 and sodium-23 NMR studies of the complexation of Li+ and Na+ ions with 1,13-dibenzo-24-crown-8 in binary nitromethane–acetonitrile mixtures. J. Coord. Chem. 46, 1–11 (1998)CrossRefGoogle Scholar
  27. 27.
    Shamsipur, M., Karkhaneei, E., Afkhami, A.: NMR study of exchange kinetics of the lithium ion with cryptand C222 in binary acetonitrile–nitromethane mixtures. J. Coord. Chem. 44, 23–32 (1998)CrossRefGoogle Scholar
  28. 28.
    Shamsipur, M., Karkhaneei, E., Afkhami, A.: Li-7 NMR study of the exchange kinetics of the lithium ion with crytand C221 in methanol solution—Temperature dependence of the exchange mechanism. Polyhedron 17, 3809–3815 (1998)CrossRefGoogle Scholar
  29. 29.
    Harris, R.K., Mann, B.E.: NMR and the periodic table. Academic Press, New York (1978)Google Scholar
  30. 30.
    Shamsipur, M., Popov, A.I.: Multinuclear NMR study of some alkali and of thallium complexes with 1,10-diaza-18-crown-6 in nonaqueous solutions. Inorg. Chim. Acta 43, 1243–1246 (1980)CrossRefGoogle Scholar
  31. 31.
    Poach, E.T., Handy, P.R., Popov, A.I.: Study of the interaction of lithium ion with pentamethylenetetrazole by lithium-7 NMR. Inorg. Nucl. Chem. Lett. 9, 359–371 (1973)CrossRefGoogle Scholar
  32. 32.
    Shamsipur, M., Karkhaneei, E., Afkhami, A.: NMR study of the exchange kinetics of the lithium ion with crytand C222 in binary acetonitrile–nitromethane mixtures. J. Coord. Chem. 44, 23–32 (1998)CrossRefGoogle Scholar
  33. 33.
    Harris, R.K., Mann, B.E.: NMR and the periodic table. Academic Press, New York (1978)Google Scholar
  34. 34.
    Kim, J., Shamsipur, M., Huang, S.Z., Huang, R.H., Dye, J.L.: Sandwich and mixed sandwich complexes of the cesium ion with crown ethers in nitromethane. J. Phys. Chem. A 103, 5615–5623 (1999)CrossRefGoogle Scholar
  35. 35.
    Shamsipur, M., Popov, A.I.: Multinuclear NMR study of dibenzo-30-crown-10 complexes with sodium, potassium and cesium ions in nonaqueous solvents. J. Am. Chem. Soc. 101, 4051–4055 (1979)CrossRefGoogle Scholar
  36. 36.
    Strasser, B.O., Shamsipur, M., Popov, A.I.: Kinetics of complexation of the cesium ion with large crown ethers in acetone and in methanol solutions. J. Phys. Chem. 89, 4822–4824 (1985)CrossRefGoogle Scholar
  37. 37.
    Shamsipur, M., Popov, A.I.: Cesium-133 NMR study of the kinetics of Cs+ ion complexation by 1,10-diaza-18-crown-6 and cryptand C222 in some nonaqueous solutions. J. Phys. Chem. 91, 447–454 (1987)CrossRefGoogle Scholar
  38. 38.
    Shamsipur, M., Popov, A.I.: Study of the complexation kinetics of Cs+ ion with dibenzo-30-crown-10 in some nonaqueous solvents by 133Cs NMR. J. Phys. Chem. 92, 147–152 (1988)CrossRefGoogle Scholar
  39. 39.
    Ghasemi, J., Shamsipur, M.: Spectrophotometric study of the thermodynamics of some alkaline earth cryptates in dimethylsulfoxide solution using murexide as a metallochromic indicator. J. Coord. Chem. 31, 265–272 (1994)CrossRefGoogle Scholar
  40. 40.
    Keypour, H., Dehdari, M., Salehzadeh, S., Wainwright, K.P.: Potentiometric determination of the formation constants for complexes of 3,2′,2″-triaminopropyldiethylamine with cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II). Trans. Met. Chem. 28, 425–429 (2003)CrossRefGoogle Scholar
  41. 41.
    Keypour, H., Zebarjadian, M.H., Rezaeivala, M., Shamsipur, M., Sabounchei, S.J.: Complexation studies of Mn2+, Zn2+ and Cd2+ ions with a series of tetradentate (N4) Schiff base ligands containing pyridine moiety in acetonitrile and nitromethane solutions by a competitive NMR technique using 7Li nucleus as a probe. J. Iran. Chem. Soc. 10, 1137–1143 (2013)CrossRefGoogle Scholar
  42. 42.
    Gutmann, V.: The donor–acceptor approach to molecular interactions. Plenum Press, New York (1978)CrossRefGoogle Scholar
  43. 43.
    Tüemmler, B., Maass, G., Weber, E., Wehner, W., Vögtle, F.: Noncyclic crown-type polyethers, pyridinophane cryptands, and their alkali metal ion complexes: synthesis, complex stability and kinetics. J. Am. Chem. Soc. 99, 4683–4690 (1977)CrossRefGoogle Scholar
  44. 44.
    Tüemmler, B., Maass, G., Vögtle, F., Sieger, H., Heimann, U., Weber, E.: Open-chain polyethers. Influence of aromatic donor end groups on thermodynamics and kinetics of alkali metal ion complex formation. J. Am. Chem. Soc. 101, 2588–2596 (1979)CrossRefGoogle Scholar
  45. 45.
    Buschmann, H.J.: The macrocyclic and cryptate effect. 2. Complexation of silver(I) by different ligands in methanol. Inorg. Chim. Acta 102, 95–98 (1985)CrossRefGoogle Scholar
  46. 46.
    Jung, J.H., Yoon, I., Park, K.J., Lee, S.S., Choi, K.S., Park, S.B.: Solvent extraction of silver(I) over lead(II) by oxygen–sulfur mixed donorpodands. Microchem. J. 63, 100–108 (1999)CrossRefGoogle Scholar
  47. 47.
    Larson, J.M., Sousa, L.R.: Crown ether model systems for the study of photoexcited-state response to oriented perturbers. How does a naphthalene derivative respond to an alkali metal cation in its π; face? J. Am. Chem. Soc. 100, 1943–1949 (1978)CrossRefGoogle Scholar
  48. 48.
    Yoon, I., Lee, Y.H., Jung, J.H., Park, K.M., Kim, J., Lee, S.S.: Assembly of a tennis ball-like supramolecule coordinatively encapsulating disilver. Inorg. Chem. Commun. 5, 820–828 (2002)CrossRefGoogle Scholar
  49. 49.
    Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. 32, 751–767 (1976)CrossRefGoogle Scholar
  50. 50.
    Pearson, R.G.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963)CrossRefGoogle Scholar
  51. 51.
    Irving, H., Williams, R.J.P.: The stability of transition-metal complexes. J. Chem. Soc. 75, 3192–3210 (1953)Google Scholar
  52. 52.
    Shamsipur, M., Alizadeh, N.: Spectrophotometric study of cobalt, nickel, copper, zinc, cadmium and lead complexes with murexide in dimethylsulfoxide solution. Talanta 39, 1209–1212 (1992)CrossRefGoogle Scholar
  53. 53.
    Madrakian, T., Shamsipur, M.: Spectrophotometric study of some transition metal complexes with tetraethyleneglycol-bis-(8-quinolyl) ether in dimethylsulfoxide solution using murexide as a metallochromic indicator. Pol. J. Chem. 73, 1405–1410 (1999)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hassan Keypour
    • 1
  • Mohammad Hasan Zebarjadian
    • 1
  • Majid Rezaeivala
    • 2
  • Mojtaba Shamsipur
    • 3
  • Hamid Reza Bijanzadeh
    • 4
  1. 1.Faculty of ChemistryBu-Ali Sina UniversityHamedanIran
  2. 2.Department of Chemical EngineeringHamedan University of TechnologyHamedanIran
  3. 3.Department of ChemistryRazi UniversityKermanshahIran
  4. 4.Department of ChemistryTarbiat Modarres UniversityTehranIran

Personalised recommendations