Journal of Solution Chemistry

, Volume 43, Issue 5, pp 870–884 | Cite as

The Reactivity of vic-dioximes Towards the [(H2O)(tap)2RuORu(tap)2(H2O)]2+ Ion {tap = 2-(m-tolylazo)pyridine} at Physiological pH

  • Arup Mandal
  • Sumon Ray
  • Animesh Chattopadhyay
  • Parnajyoti Karmakar
  • Debabrata Nandi
  • Alak K. Ghosh


Kinetics of aqua ligand substitution from [(H2O)(tap)2RuORu(tap)2(H2O)]2+ {tap = 2-(m-tolylazo)pyridine}, by three vicinal dioximes, namely dimethylglyoxime (L1H), 1,2-cyclohexanedione dioxime (L2H) and α-furil dioxime (L3H), have been studied spectrophotometrically in the 35–50 °C temperature range. The reaction was monitored at 560 nm where the absorbance between the reactant and product is at a maximum. At pH 7.4, the reaction has been found to proceed via two distinct consecutive steps, i.e., it shows a non-linear dependence on the concentration of ligands: the first process is [ligand] dependent but the second step is [ligand] independent. The rate constants for the processes are: k 1 ~ 10−3 s−1 and k 2 ~ 10−4 s−1. The activation parameters, calculated from Eyring plots, suggest an associative mechanism for the interaction process. From the temperature dependence of the outer sphere association equilibrium constants, the thermodynamic parameters were also calculated, which give negative ΔG° values at all temperatures studied, supporting the spontaneous formation of an outer sphere association complex. The product of the reaction has been characterized with the help of IR and ESI-mass spectroscopic analysis.


Ligand substitution vic-dioximes [(H2O)(tap)2RuORu(tap)2(H2O)]2+ Kinetics 


  1. 1.
    Chakravorty, A.: Structural chemistry of transition metal complexes of oximes. Coord. Chem. Rev. 13, 1–46 (1974)CrossRefGoogle Scholar
  2. 2.
    Kuse, S., Motomizu, S., Toei, K.: o-Diketonedioxime compounds as analytical reagents for the spectrophotometric determination of nickel. Anal. Chim. Acta 70, 65–76 (1974)CrossRefGoogle Scholar
  3. 3.
    Kirschenbaum, L.J., Panda, R.K., Borish, E.T., Mentasti, E.: Vicinal-dioximate complexes of silver(III). Inorg. Chem. 28, 3623–3628 (1989)CrossRefGoogle Scholar
  4. 4.
    Hughes, M.N.: The Inorganic Chemistry of Biological Processes, 2nd edn. Wiley, New York (1981)Google Scholar
  5. 5.
    Ozcan, E., Mirzaŏglu, R.: Synthesis of four new substituted arylaminoglyoximes and their complexes with copper(II), nickel(II), cobalt(II), and palladium(II). Synth. React. Inorg. Met. Org. Chem. 18, 559–574 (1988)CrossRefGoogle Scholar
  6. 6.
    Lance, K.A., Goldsby, K.A., Busch, D.H.: Effective new cobalt(II) dioxygen carriers derived from dimethylglyoxime by the replacement of the linking protons with difluoroboron(1+). Inorg. Chem. 29, 4537–4544 (1990)CrossRefGoogle Scholar
  7. 7.
    Erkkila, K.E., Odom, D.T., Barton, J.K.: Recognition and reaction of etallointercalators with DNA. Chem. Rev. 99, 2777–2796 (1999)CrossRefGoogle Scholar
  8. 8.
    Sigman, D.S., Mazumder, A., Perrin, D.M.: Chemical nucleases. Chem. Rev. 93, 2295–2316 (1993)CrossRefGoogle Scholar
  9. 9.
    Eriksson, M., Leijon, M., Hiort, C., Norden, B., Graslund, A.: Binding of δ- and λ-[Ru(phen)3]2+ to [d(CGCGATCGCG)]2 studied by NMR. Biochemistry 33, 5031–5041 (1994)CrossRefGoogle Scholar
  10. 10.
    Hudson, B.P., Dupureur, C.M., Barton, J.K.: 1H NMR structural evidence for the sequence-specific design of an intercalator: δ-α-[Rh[(R, R)-Me2trien]phi]3+ bound to d(GAGTGCACTC)2. J. Am. Chem. Soc. 117, 9379–9380 (1995)CrossRefGoogle Scholar
  11. 11.
    Terbrueggen, R.H., Barton, J.K.: Sequence-specific DNA binding by a rhodium complex: recognition based on sequence-dependent twistability. Biochemistry 34, 8227–8234 (1995)CrossRefGoogle Scholar
  12. 12.
    Lecomte, J.P., Kirsch-De Mesmaeker, A., Kelly, J.: Photoreactions of model complexes with DNA especially those involving a primary photo-electron transfer. Top. Curr. Chem. 177, 25–76 (1996)CrossRefGoogle Scholar
  13. 13.
    Lincoln, P., Norden, B.: DNA binding geometries of ruthenium(II) complexes with 1,10-phenanthroline and 2,2′-bipyridine ligands studied with linear dichroism spectroscopy. Borderline cases of intercalation. J. Phys. Chem. B. 102, 9583–9594 (1998)CrossRefGoogle Scholar
  14. 14.
    Barton, J.K.: Metals and DNA: molecular left-handed complements. Science 233, 727–734 (1986)CrossRefGoogle Scholar
  15. 15.
    Barton, J.K., Dannenberg, J.J., Raphael, A.L.: Enantiomeric selectivity in binding tris(phenanthroline)zinc(II) to DNA. J. Am. Chem. Soc. 104, 4967–4969 (1982)CrossRefGoogle Scholar
  16. 16.
    Barton, J.K., Danishefsky, A.T., Goldberg, J.M.: Tris(phenanthroline)ruthenium(II): stereoselectivity in binding to DNA. J. Am. Chem. Soc. 106, 2172–2176 (1984)CrossRefGoogle Scholar
  17. 17.
    Barton, J.K., Raphael, A.L.: Site-specific cleavage of left-handed DNA in pBR322 by lambda-tris(diphenylphenanthroline)cobalt(III). Proc. Acad. Sci. USA 82, 6460–6464 (1985)CrossRefGoogle Scholar
  18. 18.
    Kumar, C.V., Barton, J.K., Turro, N.J.: Photophysics of ruthenium complexes bound to double helical DNA. J. Am. Chem. Soc. 107, 5518–5523 (1985)CrossRefGoogle Scholar
  19. 19.
    Das, T., Bera, B.K., Datta, A.K., Ghosh, A.K.: Kinetic and mechanistic studies on the substitution of aqua ligands from cis-diaqua-bis-(bypyridyl)-ruthenium(II) ion by vicinal-dioximes. Transit. Met. Chem. 34, 247–253 (2009)CrossRefGoogle Scholar
  20. 20.
    Ghosh, B.K., Chakravorty, A.: Electrochemical studies of ruthenium compounds part I. Ligand oxidation levels. Coord. Chem. Rev. 95, 239–294 (1989)CrossRefGoogle Scholar
  21. 21.
    Goswami, S., Chakraborty, A.R., Chakravorty, A.: Chemistry of ruthenium. 2. Synthesis, structure, and redox properties of 2-(arylazo)pyridine complexes. Inorg. Chem. 20, 2246–2250 (1981)CrossRefGoogle Scholar
  22. 22.
    Goswami, S., Chakraborty, A.R., Chakravorty, A.: Chemistry of ruthenium. 7. Aqua complexes of isomeric bis[(2-arylazo)pyridine]ruthenium(II) moieties and their reactions: solvolysis, protic equilibriums, and electrochemistry. Inorg. Chem. 22, 602–609 (1983)CrossRefGoogle Scholar
  23. 23.
    Mercer, E.E., McAllister, W.A., Durig, J.R.: An infrared study of the directive influences by ligands in nitrosylruthenium complexes. Inorg. Chem. 5, 1881 (1966)CrossRefGoogle Scholar
  24. 24.
    Weyh, J.A., Hamm, R.E.: Aquation of the cis-bis(iminodiacetato)chromate(III) and trans(fac)-bis(methyliminodiacetato)chromate(III) ions in acidic aqueous medium. Inorg. Chem. 8, 2298–2302 (1969)CrossRefGoogle Scholar
  25. 25.
    Sillen, L.G., Martell, A.E.: Stability Constants of Metal ion Complexes. Special Publication No. 17. The Chemical Society, London (1964)Google Scholar
  26. 26.
    Mahanti, B., De, G.S.: Kinetic and mechanistic studies on the substitution of aqua ligands from cis-diaqua-bis-(bypyridyl)-ruthenium(II) ion by salicylhydroxamic acid in aqueous medium. Transit. Met. Chem. 17, 521–524 (1992)CrossRefGoogle Scholar
  27. 27.
    Raven, S.J., Meyer, T.J.: Reactivity of the oxo-bridged ion µ-oxobis[bis(2,2′-bipyridine)dioxodiruthenium](3+). Inorg. Chem. 27, 4478–4479 (1988)CrossRefGoogle Scholar
  28. 28.
    Kutner, W., Gilbert, J.A., Tomaszewski, A., Meyer, T.J., Murray, R.W.: Stability and electrocatalytic activity of the oxo-bridged dimer [(bpy)2(H2O)RuORu(OH2)(bpy)2]4+ in basic solutions. J. Electroanal. Chem. 205, 185–207 (1986)CrossRefGoogle Scholar
  29. 29.
    Gersten, S.W., Samuels, G.J., Meyer, T.J.: Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J. Am. Chem. Soc. 104, 4029–4030 (1982)CrossRefGoogle Scholar
  30. 30.
    Ghosh, P., Chakravorty, A.: Hydroxamates of bis(2,2′-bipyridine)ruthenium: synthesis, protic, redox, and electroprotic equilibria, spectra, and spectroelectrochemical correlations. Inorg. Chem. 23, 2242–2248 (1984)CrossRefGoogle Scholar
  31. 31.
    Cotton, F.A., Wilkinson, G., Murrilo, C.A., Bochman, M.: Advanced Inorganic Chemistry, 6th edn. Wiley, New York (1999)Google Scholar
  32. 32.
    Gilbert, J.A., Eggleston, D.S., Murphy Jr, W.R., Geselowitz, D.A., Gersten, S.W., Hodgson, D.J., Meyer, T.J.: Structure and redox properties of the water-oxidation catalyst [(bpy)2(OH2)RuORu(OH2)(bpy)2]4+. J. Am. Chem. Soc. 107, 3855–3864 (1985)CrossRefGoogle Scholar
  33. 33.
    Gilbert, J.A., Geselowitz, D., Meyer, T.J.: Redox properties of the oxo-bridged osmium dimer [(bpy)2(OH2)OsIIIOOsIV(OH)(bpy)2]4+. Implications for the oxidation of water to oxygen. J. Am. Chem. Soc. 108, 1493–1501 (1986)CrossRefGoogle Scholar
  34. 34.
    Mandal, A., Mondal, S., Karmakar, P., Mallick, S., Bera, B.K., Ghosh, A.K.: Mechanistic aspects of ligand substitution on [(H2O)(tap)2RuORu(tap)2(H2O)]2+ ion tap = 2-(m-tolylazo)pyridine by some amino acids in aqueous medium at physiological pH. Int. J. Chem. Kinet. 44, 612–623 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Arup Mandal
    • 1
  • Sumon Ray
    • 1
  • Animesh Chattopadhyay
    • 1
  • Parnajyoti Karmakar
    • 1
  • Debabrata Nandi
    • 1
  • Alak K. Ghosh
    • 1
  1. 1.Department of ChemistryThe University of BurdwanBurdwanIndia

Personalised recommendations