Advertisement

Journal of Solution Chemistry

, Volume 43, Issue 5, pp 989–999 | Cite as

Potentiometric and Theoretical Studies of (2Z, 3Z)-2H-benzo[b][1,4]thiazine-2,3(4H)-dionedioxime with Some Divalent Transition Metal Ions

  • Faisal N. Al-Obaidi
  • Hasan Atabey
  • Mustafa Macit
  • Hayati Sari
Article
  • 126 Downloads

Abstract

The protonation equilibria of (2Z, 3Z)-2H-benzo[b][1,4]thiazine-2,3(4H)-dionedioxime (BTDH2) together with the equilibria of its bis- binary complexes of Co(II), Ni(II), Cu(II) and Zn(II) were investigated potentiometrically. The investigation was carried out at 25 ± 0.1 °C, in aqueous solution, with a constant ionic strength of 0.100 mol·dm−3 NaCl. The protonation constants of the ligand together with the stability constants of a variety of complexes were determined potentiometrically in 10 % ethanol–water mixed solution using the SUPERQUAD computer program. Theoretical calculations were set up to assist in understanding the protonation sequence in the ligand molecule via the semi-empirical molecule orbital method of parameterized model number 3. Results are discussed in connection to the basicity of the donor atoms and structural arrangement of the ligand. Although BTDH2 has two dissociable protons, four protonation constants can be measured under the experimental conditions presented. These four protonation constants (as log10 βs) are 10.245, 19.397, 22.414 and 25.176.

Keywords

Basicity Vic-dioximes Metal complexes Protonation constants Stability constants SUPERQUAD 

References

  1. 1.
    Yari, A., Kakanejadifard, A.: Spectrophotmetic studies on complexation of newly synthesized vic-dioxime derivative with nickel(II) in dimethylformamide. J. Coord. Chem. 60, 1121–1132 (2007)CrossRefGoogle Scholar
  2. 2.
    Kilic, A., Tas, E., Gumgum, B., Yilmaz, I.: Synthesis, spectral characterization and electrochemical properties of new vic-dioxime complexes bearing carboxylate. Trans. Met. Chem. 31, 645–652 (2006)CrossRefGoogle Scholar
  3. 3.
    Gursoy, S., Cihan, A., Kocak, M.: Synthesis and complexation of a novel soluble vic-dioxime ligand. Chem. Mon. 132, 967–972 (2001)CrossRefGoogle Scholar
  4. 4.
    Canpolat, E., Kaya, M., Gur, S.: Synthesis, characterization of some Co(III) complexes with vic-dioxime ligands and their antimicrobial properties. Turk. J. Chem. 28, 235–242 (2004)Google Scholar
  5. 5.
    Kalia, J., Raines, R.T.: Hydrolytic stability of hydrazones and oximes. Angew. Chem. Int. Ed. 47, 7523–7526 (2008)CrossRefGoogle Scholar
  6. 6.
    Meek, L.T., Cneney, G.E.: The copper(II) syn-phenyl-2-pyridyl ketoxime system part 1. Can. J. Chem. 43, 64–74 (1965)CrossRefGoogle Scholar
  7. 7.
    Kirschenbaum, L.J., Panda, R.K., Borish, E.T., Mentasti, E.: Vicinal-dioximate complexes of silver. Inorg. Chem. 28, 3623–3628 (1989)CrossRefGoogle Scholar
  8. 8.
    Ocak, U., Gok, Y., Senturk, H.: Evaluation of mononuclear Ni(II) complex of a tetra-cryptanded vic-dioxime and its model compound 14-membered N2O2S2–macrobicyclic ligand as Pb2+, Cd2+ and Hg2+ extractants. Sep. Sci. Technol. 44, 1240–1249 (2009)CrossRefGoogle Scholar
  9. 9.
    Dyrssen, D., Hennichs, M.: The solution chemistry of copper and nickel complexes with dimethylglyoxime. Acta Chem. Scand. 15, 47–61 (1961)CrossRefGoogle Scholar
  10. 10.
    Bank, C., Anderson, S.: Stability constants and intrinsic solubility of several nickel(II) vic-dioxime complexes. Inorg. Chem. 2, 112–115 (1963)CrossRefGoogle Scholar
  11. 11.
    Boyer, J.H.: Increasing the index of covalent oxygen bonding at nitrogen attached of carbon. Chem. Rev. 80, 495–561 (1980)CrossRefGoogle Scholar
  12. 12.
    Gul, A., Bekaroglu, O.: Syntheses of N,N′-bis(4′-benzo[15-crown5]) diaminoglyoxime and its complexes with copper(II), nickel(II), cobalt(III), palladium(II), platinum(II), and uranyl(VI). J. Chem. Soc. Dalton Trans. 2537–2541 (1983)Google Scholar
  13. 13.
    Coskun, A., Koc, Z.E.: Synthesis and characterization of new vic-dioximes and their metal complexes with Cu(II), Ni(II) and Co(II) salts. Russ. J. Coord. Chem. 33, 184–189 (2007)CrossRefGoogle Scholar
  14. 14.
    Canpolat, E., Kaya, M.: Synthesis and characterization of two vic-dioximes containing the 1,3-dioxolane ring and 1,4-diaminobutane and their cobalt(II), nickel(II) copper(II) and zinc(II) metal complexes. Trans. Met. Chem. 29, 550–556 (2004)CrossRefGoogle Scholar
  15. 15.
    Sari, H., Al-Obaidi, F., Macit, M., Atabey, H.: Study of the coordination properties of 1,2-bis(2,6-dimethphenylamino) glyoxime and determine the stability constant of its complexes with Ni(II), Cu(II) and Zn(II0 metal ions in solution. J. Solution Chem. 40, 1618–1628 (2011)CrossRefGoogle Scholar
  16. 16.
    Gursoy, S., Kocak, M., Cihan, A., Gul, A., Bdkaroglu, O.: Synthesis and complexation of a novel soluble vic-dioxime with hydroxyethyl pendant arms. Trans. Met. Chem. 25, 474–477 (2000)CrossRefGoogle Scholar
  17. 17.
    Serin, S., Bekaroglu, O.: Synthesis and complex formation of stereoisomers of 1,3-diphenyl-2-thioxo-4,5-bis(hdroxyimino)-imidazoline. Z. Anorg. Allgem. Chem. 496, 197–204 (1983)CrossRefGoogle Scholar
  18. 18.
    Canpolat, E., Kaya, M.: Synthesis and characterization of a vic-dioxime derivative and investigation of its complexes with Ni(II), Co(II), Cu(II) and UO2(VI) metals. J. Coord. Chem. 55, 961–968 (2002)CrossRefGoogle Scholar
  19. 19.
    Banks, C.V., Anderson, S.: Nickel-nickel bond in nickel dimethylglyoxime. J. Am. Chem. Soc. 84, 1486–1487 (1962)CrossRefGoogle Scholar
  20. 20.
    Nakamura, A., Konishi, A., Ostuka, S.: Chiral metal complexes. Part 5. Cobalt(II) and some other transition metal complexes of chiral vic-dioximate ligands derived from d-camphor and l-β-pinene. J. Chem. Soc. Dalton. Trans. 488–495 (1979)Google Scholar
  21. 21.
    Can, M., Sari, H., Macit, M.: Potentiometric study of the new synthesized 1-benzyl-4-piperazinglyoxime and 1-methyl-4-piperazinglyoxime and their divalent metal complexes. Acta Chim. Slov. 50, 1–14 (2003)Google Scholar
  22. 22.
    Pedersen, S., Larsen, E.: Anti-amphi and cis-trans isomerisms in some bis(dioximato nickel(II) complexes. Acta Chem. Scand. 27, 3291–3301 (1973)CrossRefGoogle Scholar
  23. 23.
    Gok, Y., Ozcan, E.: Synthesis and characterization of 2,3-bis(hydroxyimino)-1,2,3,4-tetrahydro-pyrido[2,3-b] pyrazine and its nickel(II), cobalt(II), copper(II), palladium(II), cadmium(II) and cobalt(III) complexes. Trans. Met. Chem. 16, 393–396 (1991)CrossRefGoogle Scholar
  24. 24.
    Ozcan, E., Karapinar, E., Demirtas, B.: Synthesis of four new vic-dioximes and their nickel(II), cobalt(II), copper(II) and cadmium(II) complexes. Trans. Met. Chem. 27, 557–561 (2002)CrossRefGoogle Scholar
  25. 25.
    Charkravorty, A.: Structural chemistry of transition metal complexes of oximes. Coord. Chem. Revs. 13, 1–46 (1974)CrossRefGoogle Scholar
  26. 26.
    Ovcharenko, V.I., Fokin, S.V., Reznikov, V.A., Ikorskii, V.N., Romanenko, G.V., Sagdeev, R.Z.: Nonclassical packing of metal dioximates. Superexchange through a diamagnetic metal cation. Inorg. Chem. 37, 2104–2105 (1998)CrossRefGoogle Scholar
  27. 27.
    Tas, E., Asanoglu, M., Kilic, A., Kara, Z.: Synthesis, characterization and redox properties of three new vic-dioximes and their nickel(II) metal complexes. Trans. Met. Chem. 30, 758–764 (2005)CrossRefGoogle Scholar
  28. 28.
    Serin, S.: New vic-dioxime transition metal complexes. Trans. Met. Chem. 26, 300–306 (2001)CrossRefGoogle Scholar
  29. 29.
    Gok, Y., Serin, S.: Synthesis and complex formation of the structural isomers of 2,3-bis(hydroxyimino)-2,3-dihydro-4H-1,4-benzothiazine. Synth. React. Inorg. Met. Org. Chem. 18, 975–988 (1988)CrossRefGoogle Scholar
  30. 30.
    Lacey, M. J., Macdonald, C. G., McConnell, J. F., Shannon, J. S.: The crystal structure of an oxime complex of nickel(II) with oximino oxygen-to-nickel bonding in a chelate ring. J. Chem. Soc. Chem. Commun. 1206–1207 (1971)Google Scholar
  31. 31.
    Canpoalt, E., Kaya, M., Bakrdere, E.G.: Synthesis and characterization of mononuclear cadmium(II) and dinuclear uranyl(VI) complexes with vic-dioximes. Trans. Met. Chem. 30, 503–507 (2005)CrossRefGoogle Scholar
  32. 32.
    Gurosy, S., Cihan, A., Kocak, M.B., Bekaroglu, O.: Synthesis of new metal-free and metal-containing phthalocyanines with tertiary or quaternary amino ethyl substituent. Monatsh. Chem. 132, 813–819 (2001)CrossRefGoogle Scholar
  33. 33.
    Volker, W.A., Huffman, T.J.: Therapeutic radiopharmaceuticals. Chem. Rev. 99, 2269–2292 (1999)CrossRefGoogle Scholar
  34. 34.
    Jurisson, S.S., Lydon, J.: Potential technetium small molecule radiopharmaceuticals. Chem. Rev. 99, 2205–2218 (1999)CrossRefGoogle Scholar
  35. 35.
    Dempsy, J.L., Brunschwig, B.S., Winkler, J.R., Gray, H.B.: Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009)CrossRefGoogle Scholar
  36. 36.
    Thomas, T.W., Underhill, A.E.: Metal–metal interactions in transition-metal complexes containing infinite chains of metal atoms. Chem. Soc. Rev. 1, 99–120 (1972)CrossRefGoogle Scholar
  37. 37.
    Underhill, A.E., Watkins, D.M., Pethig, R.: Electrical conduction properties of Ni(dpg)2I, Ni(dpg)2Br, and Pd(dpg)2I (where dpg = diphenylglyoxime). Inorg. Nucl. Chem. Lett. 9, 1269–1273 (1973)CrossRefGoogle Scholar
  38. 38.
    Gans, P., Sabatini, A., Vacca, A.: SUPERQUAD: an improved general program for computation of formation constants from potentiometric data. J. Chem. Soc. Dalton Trans. 1985, 1195–1200 (1985)CrossRefGoogle Scholar
  39. 39.
    Yari, A., Azizi, S., Kakanejadifard, A.: An electrochemical Ni(II)-selective sensor-based on a newly synthesized dioxime derivative as a neutral ionophore. Sens. Actuators B 119, 167–173 (2006)CrossRefGoogle Scholar
  40. 40.
    Ghiasvand, A. R., Shadabi, S., Kakanejadifard, A., Khajehkoolaki, A.: Synthesis of a new α-dioxime derivative and its application for selective homogeneous liquid–liquid extraction of Cu(II) into a microdroplet followed by direct GFAAS determination. Bull. Korean. Chem. Soc. 26, 781–785 (2005)Google Scholar
  41. 41.
    Pettit, L. D.: Academic Software, Sourby Farm, Timble, Otley, LS21 2PW, UK (1992)Google Scholar
  42. 42.
    Yu, H., Kuhne, R., Ebert, R.: Schuurmann.: Comparative analysis of QSAR models for predicting pKa of organic oxygen acids and nitrogen bases from molecular structure. J. Chem. Inf. Model. 50, 1949–1960 (2010)CrossRefGoogle Scholar
  43. 43.
    Selma, S., Davorka, Z.: Computer programs for calculating pKa: a comparative study for 3-(3-(2-nitrophenyl)prop-2-enoyl)-2H-1-benzopyran-2-one. J. Serbian Chem. Soc. 75, 243–248 (2010)CrossRefGoogle Scholar
  44. 44.
    Dewar, M.J.S., Dieter, K.M.: Evaluation of AM1 calculated proton affinities and deprotonation enthalpies. J. Am. Chem. Soc. 108, 8075–8086 (1986)CrossRefGoogle Scholar
  45. 45.
    Demirhan, N., Erden, I., Avciata, U.: Synthesis and characterization of 5,6-diamino-1,10-phenanthroline substituted anti-dichloroglyoxime and its complexes with cobalt(II), nickel(II) and copper(II). Synth. React. Inorg. Met. Org. Chem. 32, 1361–1372 (2002)CrossRefGoogle Scholar
  46. 46.
    Skoog, D., West, D., Holle, F., Crouch, S.: Fundamentals of Analytical Chemistry, 8th edn. Brooks/Cole-Thomson Learning, Belmont (2004)Google Scholar
  47. 47.
    Al-Obaidi, F.N., Sari, H., Macit, M.: Potentiometric study of the coordination tendency of 1,2-bis(4-benzylpiperidine) glyoxime toward some transition metal ions. J. Chem. Eng. Data 55, 5576–5580 (2010)CrossRefGoogle Scholar
  48. 48.
    Atabey, H., Sari, H., Al-Obaidi, F.N.: Protonation equilibria of Carminic acid and stability constants of its complexes with some divalent metal ions in aqueous solution. J. Solution Chem. 41, 793–803 (2012)CrossRefGoogle Scholar
  49. 49.
    Favaro, G., Miliani, C., Romani, A., Vaginini, M.: Role of protolytic interactions in photo-aging processes of carminic acid and carminic lake in solution and painted layers. J. Chem. Soc. Perkin Trans. 2, 192–197 (2002)Google Scholar
  50. 50.
    Rossotti, H.: The Study of Ionic Equilibria. Longman, London and New York (1978)Google Scholar
  51. 51.
    Coskun, A., Yilmaz, F., Akgemci, E.G.: Synthesis, characterization and electrochemical investigation of a novel vic-dioxime ligand and its some transition metal complexes. J. Incl. Phenom. Macrocycl. Chem. 60, 393–400 (2008)CrossRefGoogle Scholar
  52. 52.
    Lance, K.A., Goldsby, K.A., Busch, D.H.: Effective new cobalt(II) dioxygen carriers derived from dimethylglyoxime by the replacement of linking protons with difluoroboron(1+). Inorg. Chem. 29, 4537–4544 (1990)CrossRefGoogle Scholar
  53. 53.
    Babu, M.S., Krishna, P.G., Reddy, K.H., Philip, G.H.: Investigations on nuclease activity of trans mixed ligand–copper(II) complexes with ortho substituted aromatic oximes and heterocyclic bases. J. Chil. Chem. Soc. 54, 339–344 (2009)Google Scholar
  54. 54.
    Gurol, I., Ahsen, V., Bekaroglu, O.: Synthesis of soluble complexes from a tetradentate dithioglyoxime ligand. J. Chem. Soc. Dalton Trans. 131, 2283–2286 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Faisal N. Al-Obaidi
    • 1
  • Hasan Atabey
    • 2
  • Mustafa Macit
    • 3
  • Hayati Sari
    • 2
  1. 1.Department of Chemistry, College of ScienceThe University of MustansiriyahBaghdadIraq
  2. 2.Chemistry Department, Science and Arts FacultyGaziosmanpasa UniversityTokatTurkey
  3. 3.Department of ChemistryOndokuzmayıs UniversitySamsunTurkey

Personalised recommendations