Journal of Solution Chemistry

, Volume 43, Issue 5, pp 853–869 | Cite as

Interaction Behavior Between an Amino Sulfonate Surfactant and Octylphenol Polyoxyethylene Ether (10) in Aqueous Solution

  • Zhao Hua Ren
  • Yue Luo
  • Yan Cheng Zheng
  • Dong Po Shi
  • Ping Mei
  • Fan Xiu Li


The micellization of binary mixtures of sodium dodecyl diamino sulfonate (C12AS) and nonionic octylphenol polyoxyethylene ether (10) (OP-10) was investigated in aqueous solution at a pH of about 6.0. Two techniques, UV–Vis spectroscopy using pyrene as a probe and surface tensiometry, were employed in this work to obtain information on the micellization behavior of the mixed C12AS/OP-10 system. The interaction parameters between the two components, activity coefficients in mixed micelles, compositions of mixed micelles, and thermodynamic parameters of micellization (calculated using Clint’s equation, Rubingh’s treatment based on regular solution theory, and Rodenas’s treatment considering the Gibbs–Duhem equation) were evaluated for this mixed surfactant system. The results show that the synergistic effect between C12AS and OP-10 in all mixed systems plays a vital role in the reduction of the overall critical micelle concentration (cmc) value in aqueous solution. In the process of micellization, both the steric effect of the head group and the charge density for C12AS affect the formation and stability of the mixed micelles, and the entry of a small amount of C12AS into the unconsolidated micelle of OP-10 is more favorable to the formation of the mixed micelle by promoting the reduction of the mixed micelle cmc value. Thermodynamic data show that micellization for the mixed C12AS/OP-10 system is both an enthalpy and entropy driven process.


Amino sulfonate Surfactant Micellization Interaction Synergistic effect Thermodynamics 



Funding for this work was provided by the National Sciences Foundation of China (51304029 and 41202111), the Basic Science Research Development Fund and the Ph.D. Start-up Fund of Yangtze University, China.


  1. 1.
    Rosen, M.J.: Chap. 11. Surfactants and Interfacial Phenomena, 3rd edn. Wiley, Hoboken (2004)CrossRefGoogle Scholar
  2. 2.
    Ren, Z.H., Chen, D.J., Luo, Y., Huang, J.: Investigation of influencing of inorganic salt on the critical micelle concentration of sodium octylphenol polyoxyethylenated ethylsulfonate. Act. Chim. Siencia 68, 1771–1775 (2010)Google Scholar
  3. 3.
    Holland, P.M., Rubingh, D.N.: Nonideal multicomponent mixed micelle model. J. Phys. Chem. 87, 1984–1990 (1983)CrossRefGoogle Scholar
  4. 4.
    Rodenas, E., Valiente, M., Villafruela, M.S.: Different theoretical approaches for the study of the mixed tetraethylene glycol mono-n-dodecyl etherhexadecyltrimethylammonium bromide micelles. J. Phys. Chem. 87, 4549–4554 (1999)CrossRefGoogle Scholar
  5. 5.
    Hoffmann, H., Possnecker, G.: The mixing behavior of surfactants. Langmuir 10, 381–389 (1994)CrossRefGoogle Scholar
  6. 6.
    Motomura, K., Yamanaka, M., Aratono, M.: Thermodynamic consideration of the mixed micelle of surfactants. Colloid Polym. Sci. 262, 948–955 (1984)CrossRefGoogle Scholar
  7. 7.
    Jarek, E., Wydro, P., Warszynski, P., Paluch, M.: Surface properties of mixtures of surface-active sugar derivatives with ionic surfactants: theoretical and experimental investigations. J. Colloid Interface Sci. 293, 194–202 (2006)CrossRefGoogle Scholar
  8. 8.
    Parekh, P., Varade, D., Parikh, J., Bahadur, P.: Anionic–cationic mixed surfactant systems Micellar interaction of sodium dodecyl trioxyethylene sulfate with cationic gemini surfactants. Colloids Surf. A 385, 111–120 (2011)CrossRefGoogle Scholar
  9. 9.
    Cui, Z.G., Canselier, J.P.: Interfacial and aggregation properties of some anionic–cationic surfactant binary systems II. Mixed micelle formation and surface tension reduction effectiveness. Colloid Polym. Sci. 279, 259–267 (2001)CrossRefGoogle Scholar
  10. 10.
    Rosen, M.J.: Synergism in mixtures containing zwitterionic surfactants. Langmuir 7, 885–888 (1991)CrossRefGoogle Scholar
  11. 11.
    Haque, M.E., Das, A.R., Rakshit, A.K., Moulik, S.P.: Properties of mixed micelles of binary surfactant combinations. Langmuir 12, 4084–4089 (1996)CrossRefGoogle Scholar
  12. 12.
    Lu, S.H., Wu, J., Somaundaran, P.: Micellar evolution in mixed nonionic anionic surfactant systems. J. Colloid Interface Sci. 367, 272–279 (2012)CrossRefGoogle Scholar
  13. 13.
    Rosen, M.J., Murphy, D.S.: Synergism in binary mixtures of surfactants: V. Two-phase liquid–liquid systems at low surfactant concentrations. J. Colloid Interface Sci. 110, 225–232 (1986)CrossRefGoogle Scholar
  14. 14.
    Das, C., Chakraborty, T., Ghosh, S., Das, B.: Mixed micellization of anionic–nonionic surfactants in aqueous media: a physicochemical study with theoretical consideration. Colloid Polym. Sci. 286, 1143–1155 (2008)CrossRefGoogle Scholar
  15. 15.
    Kharitonova, T.V., Ivanova, N.I., Summ, B.D.: Intermolecular interactions in the binary systems of cationic and nonionic surfactants. Colloid J. 64, 620–631 (2002)CrossRefGoogle Scholar
  16. 16.
    Ruiz, C.C., Aguiar, J.: Mixed micellization of octaoxyethylene monododecyl ether and n-alkyltrimethylammonium bromides. Colloids Surf. A 224, 221–230 (2003)CrossRefGoogle Scholar
  17. 17.
    Sehgal, P., Kosaka, O., Doe, H., Otzen, D.E.: Interaction and stability of mixed micelle and monolayer of nonionic and cationic surfactant mixtures. J. Dispers. Sci. Technol. 30, 1050–1058 (2009)CrossRefGoogle Scholar
  18. 18.
    Ren, Z.H., Luo, Y.: Amino sulfonate amphoteric surfactants and the process for preparing them. C.N. 101912745 A (2011)Google Scholar
  19. 19.
    Lange, H., Beck, K.H.: Zur mizellbildung in mischlösungen homologer und nichthomologer tenside. Kolloid Z. Z. Polym. 251, 424–431 (1973)CrossRefGoogle Scholar
  20. 20.
    Clint, J.H.: Micellisation of mixed nonionic surface active agents. J. Chem. Soc. Faraday Trans. 71, 1327–1334 (1975)CrossRefGoogle Scholar
  21. 21.
    Ren, Z.H., Luo, Y., Shi, D.P.: Mechanism on the interaction between amino sulfonate amphoteric surfactant and sodium dodecyl benzene sulfonate in aqueous solution. Colloids Surf. A 428, 18–24 (2013)CrossRefGoogle Scholar
  22. 22.
    Crook, E.H., Trebbi, G.F., Fordyce, D.B.: Thermodynamic properties of solutions of homogeneous p, t-octylphenoxyethoxyethanols (OPE1-10). J. Phys. Chem. 68, 3592–3599 (1964)CrossRefGoogle Scholar
  23. 23.
    Mehta, S.K., Bhawna, T.: Significant effect of polar head group of surfactants on the solubilization of Zein in mixed micellar (SDS–DDAB) media. Colloids Surf. B 81, 74–80 (2010)CrossRefGoogle Scholar
  24. 24.
    Faustino, C.M.C., Calado, A.R.T., Garcia-Rio, L.: Mixed micelle formation between amino acid-based surfactants and phospholipids. J. Colloid Interface Sci. 359, 493–498 (2011)CrossRefGoogle Scholar
  25. 25.
    Rosen, M.J.: Predicting synergism in binary mixtures of surfactants. Progr. Colloid Polym. Sci. 95, 39–47 (1994)CrossRefGoogle Scholar
  26. 26.
    Hines, J.D., Thomas, R.K., Garrett, P.R., Rennie, G.K., Penfold, J.: Investigation of mixing in binary surfactant solutions by surface tension and neutron reflection: strongly interacting anionic/zwitterionic mixtures. J. Phys. Chem. B 102, 8834–8846 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zhao Hua Ren
    • 1
  • Yue Luo
    • 1
  • Yan Cheng Zheng
    • 1
  • Dong Po Shi
    • 1
  • Ping Mei
    • 1
  • Fan Xiu Li
    • 1
  1. 1.College of Chemistry and Environmental EngineeringYangtze UniversityJingzhouChina

Personalised recommendations