Advertisement

Journal of Solution Chemistry

, Volume 43, Issue 4, pp 804–820 | Cite as

Volumetric Properties of the Nucleoside Thymidine in Aqueous Solution at T = 298.15 K and p = (10 to 100) MPa

  • Gavin R. Hedwig
  • Geoffrey B. Jameson
  • Harald Høiland
Article

Abstract

Sound speeds have been measured for aqueous solutions of the nucleoside thymidine at T = 298.15 K and at the pressures p = (10, 20, 40, 60, 80, and 100) MPa. The partial molar volumes at infinite dilution, \( V_{2}^{\text{o}} \), the partial molar isentropic compressions at infinite dilution, \( K_{S,2}^{\text{o}} \), and the partial molar isothermal compressions at infinite dilution, \( K_{T,2}^{\text{o}} \) \( \{ K_{T,2}^{\text{o}} = - (\partial V_{2}^{\text{o}} /\partial p)_{T} \} \), have been derived from the sound speeds at elevated pressures using methods described in our previous work. The \( V_{2}^{\text{o}} \) and \( K_{T,2}^{\text{o}} \) results were rationalized in terms of the likely interactions between thymidine and the aqueous solvent. The \( V_{2}^{\text{o}} \) results were also compared with those calculated using the revised Helgeson–Kirkham–Flowers (HKF) equation of state.

Keywords

Partial molar volume Partial molar isothermal compression High pressure Speed of sound Nucleosides Aqueous solution 

Notes

Acknowledgments

Two of us (G.R.H., G.B.J.) are grateful for financial assistance from the Marsden Fund (Contract No. 09-MAU-140).

References

  1. 1.
    Robertson, M.P., Joyce, G.F.: The origins of the RNA world. Cold Spring Harbor Perspect. Biol. 4, a003608 (2012)CrossRefGoogle Scholar
  2. 2.
    Dworkin, J.P., Lazcano, A., Miller, S.L.: The roads to and from the RNA world. J. Theor. Biol. 222, 127–134 (2003)CrossRefGoogle Scholar
  3. 3.
    Bartel, D.P., Unrau, P.J.: Constructing an RNA world. Trends Cell Biol. 9, M9–M13 (1999)CrossRefGoogle Scholar
  4. 4.
    Joyce, G.F.: The antiquity of RNA-based evolution. Nature 418, 214–221 (2002)CrossRefGoogle Scholar
  5. 5.
    Cech, T.R.: The RNA worlds in context. Cold Spring Harbor Perspect. Biol. 4, a006742 (2012)CrossRefGoogle Scholar
  6. 6.
    Kawamura, K.: Drawbacks of the ancient RNA-based life-like system under primitive earth conditions. Biochimie 94, 1441–1450 (2012)CrossRefGoogle Scholar
  7. 7.
    Francis, B.R.: An alternative to the RNA world hypothesis. Trends Evol. Biol. 3, 2–11 (2011)CrossRefGoogle Scholar
  8. 8.
    Powner, M.W., Sutherland, J.D., Szostak, J.W.: Chemoselective multicomponent one-pot assembly of purine precursors in water. J. Am. Chem. Soc. 132, 16677–16688 (2010); erratum in J. Am. Chem. Soc. 133, 4149–4150 (2011)CrossRefGoogle Scholar
  9. 9.
    Powner, M.W., Gerland, B., Sutherland, J.D.: Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009)CrossRefGoogle Scholar
  10. 10.
    Bowler, F.R., Chan, C.K.W., Duffy, C.D., Gerland, B., Islam, S., Powner, M.W., Sutherland, J.D., Xu, J.: Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation. Nature Chem. 5, 383–389 (2013)CrossRefGoogle Scholar
  11. 11.
    Levy, M., Miller, S.L.: The stability of the RNA bases: implications for the origin of life. Proc. Natl. Acad. Sci. USA 95, 7933–7938 (1998)CrossRefGoogle Scholar
  12. 12.
    Moulton, V., Gardner, P.P., Pointon, R.F., Creamer, L.K., Jameson, G.B., Penny, D.: RNA folding argues against a hot-start origin of life. J. Mol. Evol. 51, 416–421 (2000)Google Scholar
  13. 13.
    Bada, J.L.: How life began on earth: a status report. Earth Planet Sci. Lett. 226, 1–15 (2004)CrossRefGoogle Scholar
  14. 14.
    Bernhardt, H.S., Tate, W.P.: Primordial soup or vinaigrette: did the RNA world evolve at acidic pH? Biol. Direct 7, 4 (2012)CrossRefGoogle Scholar
  15. 15.
    Hedwig, G.R., Høgseth, E., Høiland, H.: Volumetric properties of the glycyl group of proteins in aqueous solution at high pressures. Phys. Chem. Chem. Phys. 10, 884–897 (2008)CrossRefGoogle Scholar
  16. 16.
    Hedwig, G.R., Høgseth, E., Høiland, H.: Volumetric properties of the nucleosides adenosine, cytidine, and uridine in aqueous solution at T = 298.15 K and p = (10 to 120 MPa). J. Chem. Thermodyn. 61, 117–125 (2013)CrossRefGoogle Scholar
  17. 17.
    Tewari, Y.B., Klein, R., Vaudin, M.D., Goldberg, R.N.: Saturation molalities and standard molar enthalpies of solution of adenosine(cr), guanosine·2H2O(cr), inosine(cr), and xanthosine·2H2O(cr) in H2O(l). J. Chem. Thermodyn. 35, 1681–1702 (2003)CrossRefGoogle Scholar
  18. 18.
    Jühling, F., Möri, M., Hartmann, R.K., Sprinzl, M., Stadler, P.F., Pütz, J.: tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucl. Acids Res. 37, D159–D162 (2009)CrossRefGoogle Scholar
  19. 19.
    Hedwig, G.R., Jameson, G.B., Høiland, H.: The partial molar heat capacity, expansion, isentropic, and isothermal compressions of thymidine in aqueous solution at T = 298.15 K. J. Chem. Thermodyn. 43, 1936–1941 (2011)CrossRefGoogle Scholar
  20. 20.
    Blandamer, M.J., Davis, M.I., Douhéret, G., Reis, J.C.R.: Apparent molar isentropic compressions and expansions of solutions. Chem. Soc. Rev. 30, 8–15 (2001)CrossRefGoogle Scholar
  21. 21.
    Desnoyers, J.E., Philip, P.R.: Isothermal compressibilities of aqueous solutions of tetraalkylammonium bromides. Can. J. Chem. 50, 1094–1096 (1972)CrossRefGoogle Scholar
  22. 22.
    McGlashan, M.L.: Chemical Thermodynamics, p. 90. Academic Press, London (1979)Google Scholar
  23. 23.
    Povey, M.J.W.: Ultrasonic Techniques for Fluids Characterization, p. 26. Academic Press, London (1997)Google Scholar
  24. 24.
    Stimson, H.F.: Heat units and temperature scales for calorimetry. Am. J. Phys. 23, 614–622 (1955)CrossRefGoogle Scholar
  25. 25.
    Del Grosso, V.A., Mader, C.W.: Speed of sound in pure water. J. Acoust. Soc. Am. 52, 1442–1446 (1972)CrossRefGoogle Scholar
  26. 26.
    Kell, G.S.: Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 66–69 (1967)CrossRefGoogle Scholar
  27. 27.
    Kell, G.S.: Density, thermal expansivity, and compressibility of liquid water from 0 to 150 °C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20, 97–105 (1975)CrossRefGoogle Scholar
  28. 28.
    Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York (1969)Google Scholar
  29. 29.
    Chen, C.-T., Millero, F.J.: Reevaluation of Wilson’s sound-speed measurements for pure water. J. Acoust. Soc. Am. 60, 1270–1273 (1976)CrossRefGoogle Scholar
  30. 30.
    Chen, C.-T., Fine, R.A., Millero, F.J.: The equation of state of pure water determined from sound speeds. J. Chem. Phys. 66, 2142–2144 (1977)CrossRefGoogle Scholar
  31. 31.
    Hedwig, G.R.: Thermodynamic properties of peptide solutions 3. Partial molar volumes and partial molar heat capacities of some tripeptides in aqueous solution. J. Solution Chem. 17, 383–397 (1988)CrossRefGoogle Scholar
  32. 32.
    Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolyte Solutions. Chap. 8, 3rd edn. Reinhold, New York (1958)Google Scholar
  33. 33.
    Hedwig, G.R., Høiland, H.: Thermodynamic properties of peptide solutions: 7. Partial molar isentropic pressure coefficients of some dipeptides in aqueous solution. J. Solution Chem. 20, 1113–1127 (1991)CrossRefGoogle Scholar
  34. 34.
    Lo Surdo, A., Shin, C., Millero, F.J.: The apparent molal volume and adiabatic compressibility of some organic solutes in water at 25 °C. J. Chem. Eng. Data 23, 197–201 (1978)CrossRefGoogle Scholar
  35. 35.
    Sakurai, M., Nakamura, K., Nitta, K., Takenaka, N.: Sound velocities and apparent molar adiabatic compressions of alcohols in dilute aqueous solutions. J. Chem. Eng. Data 40, 301–310 (1995)CrossRefGoogle Scholar
  36. 36.
    Hedwig, G.R., Hinz, H.-J.: Group additivity schemes for the calculation of the partial molar heat capacities and volumes of unfolded proteins in aqueous solution. Biophys. Chem. 100, 239–260 (2003)CrossRefGoogle Scholar
  37. 37.
    Hedwig, G.R., Jameson, G.B., Høiland, H. (manuscript in preparation)Google Scholar
  38. 38.
    Lee, A., Chalikian, T.V.: Volumetric characterization of the hydration properties of heterocyclic bases and nucleosides. Biophys. Chem. 92, 209–227 (2001)CrossRefGoogle Scholar
  39. 39.
    Buckin, V.A., Kankiya, B.I., Kazaryan, R.L.: Hydration of nucleosides in dilute aqueous solutions. Ultrasonic velocity and density measurements. Biophys. Chem. 34, 211–223 (1989)CrossRefGoogle Scholar
  40. 40.
    Hedwig, G.R.: Thermodynamic properties of peptide solutions 19. Partial molar isothermal compressions at T = 298.15 K of some peptides of sequence Gly-X-Gly in aqueous solution. J. Chem. Thermodyn. 42, 208–212 (2010)CrossRefGoogle Scholar
  41. 41.
    Hedwig, G.R., Høiland, H.: Partial molar isentropic compressions of some tetra- and pentapeptides in aqueous solution: implications for group additivity schemes for unfolded proteins. J. Solution Chem. 41, 690–701 (2012)CrossRefGoogle Scholar
  42. 42.
    Chalikian, T.V., Sarvazyan, A.P., Breslauer, K.J.: Hydration and partial molar compressibility of biological compounds. Biophys. Chem. 51, 89–109 (1994)CrossRefGoogle Scholar
  43. 43.
    Kharakoz, D.P.: Volumetric properties of proteins and their analogues in diluted water solutions. 2. Partial adiabatic compressibilities of amino acids at 15–70 °C. J. Phys. Chem. 95, 5634–5642 (1991)CrossRefGoogle Scholar
  44. 44.
    Millero, F.J., Lo Surdo, A., Shin, C.: The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25 °C. J. Phys. Chem. 82, 784–792 (1978)CrossRefGoogle Scholar
  45. 45.
    Tanger, J.C., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288, 19–98 (1988)CrossRefGoogle Scholar
  46. 46.
    Shock, E.L., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochim. Cosmochim. Acta 52, 2009–2036 (1988)CrossRefGoogle Scholar
  47. 47.
    Shock, E.L., Oelkers, E.H., Johnson, J.W., Sverjensky, D.A., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: effective electrostatic radii, dissociation constants and standard partial molal properties to 1000 °C and 5 kbar. J. Chem. Soc. Faraday Trans. 88, 803–826 (1992)CrossRefGoogle Scholar
  48. 48.
    Shock, E.L., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of organic species. Geochim. Cosmochim. Acta 54, 915–945 (1990)CrossRefGoogle Scholar
  49. 49.
    LaRowe, D.E., Helgeson, H.C.: Biomolecules in hydrothermal systems: calculation of the standard molal thermodynamic properties of nucleic-acid bases, nucleosides, and nucleotides at elevated temperatures and pressures. Geochim. Cosmochim. Acta 70, 4680–4724 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gavin R. Hedwig
    • 1
  • Geoffrey B. Jameson
    • 1
  • Harald Høiland
    • 2
  1. 1.Institute of Fundamental Sciences—ChemistryMassey UniversityPalmerston NorthNew Zealand
  2. 2.Department of ChemistryUniversity of BergenBergenNorway

Personalised recommendations