Journal of Solution Chemistry

, Volume 43, Issue 4, pp 711–726 | Cite as

Stabilities of the Ternary Complexes of Copper(II) with Substituted 1,10-Phenanthrolines and Some Amino Acids in Aqueous Solution

  • Duygu İnci
  • Rahmiye Aydın


In this study the binary and ternary complexes of copper(II) with substituted 1,10-phenanthrolines [s-phen: 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (dmphen) and 5-nitro-1,10-phenanthroline (nphen)] and l-amino acids [aa: l-phenylalanine (phe), l-tyrosine (tyr) and l-tryptophan (trp)] have been investigated using potentiometric methods in 0.1 mol·L−1 KCl aqueous ionic media at 298.2 K. The protonation constants of the ligands and the stability constants of the binary and ternary complexes of Cu(II) with the ligands were calculated from the potentiometric data using the “BEST” software package. It was inferred that the aromatic 1,10-phenanthrolines act as a primary ligand in the ternary complexes, while the oxygen and nitrogen donor-containing amino acids are secondary ligands. The observed values of Δlog10 K indicate that the ternary complexes are more stable than the binary ones, suggesting no interaction takes place between the ligands in the ternary complexes. The magnitudes of the measured stability constants of all of the ternary complexes are in the order [Cu(s-phen)(trp)]+ > [Cu(s-phen)(tyr)]+ > [Cu(s-phen)(phe)]+, which is identical to the sequence found for the binary complexes of Cu(II) with the amino acids. When the substituted 1,10-phenanthroline is changed, the stability constants of the ternary complexes decrease in the following order: [Cu(dmphen)(aa)]+ > [Cu(phen)(aa)]+ > [Cu(nphen)(aa)]+.


Copper(II) 1,10-Phenanthroline 4,7-Dimethyl-1,10-phenanthroline 5-Nitro-1,10-phenanthroline l-Amino acids l-Phenylalanine l-Tyrosine l-Tryptophan Stability constants Potentiometric methods 



We thank the Research Fund of Uludag University for financial support given to this research project (Project Number UAP(F)-2011/71). This study is a part of MS thesis of the first author accepted on 16 January 2013 by the Graduate School of Natural and Applied Sciences of Uludag University.


  1. 1.
    May, P.M., Williams, D.R.: In: Sigel, H. (ed.) Metal Ions in Biological Systems Properties of Copper, vol. 12. Marcel Dekker, New York (1981)Google Scholar
  2. 2.
    Sigel, H. (ed.): Metal Ions in Biological Systems, vol. 13. Marcel Dekker, New York (1981)Google Scholar
  3. 3.
    Miura, T., Hori-J, A., Mototani, H., Takeuchi, H.: Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence. Biochemistry 38, 11560–11569 (1999)CrossRefGoogle Scholar
  4. 4.
    Ramakrishnan, S., Rajendiran, V., Palaniandavar, M., Periasamy, V.S., Srinag, B.S., Krishnamurthy, H., Akbarsha, M.A.: Induction of cell death by ternary copper(II) complexes of l-tyrosine and diimines: role of coligands on DNA binding and cleavage and anticancer activity. Inorg. Chem. 48, 1309–1322 (2009)CrossRefGoogle Scholar
  5. 5.
    Remko, M., Fitz, D., Broer, R., Rode, B.M.: Effect of metal Ions (Ni2+, Cu2+ and Zn2+) and water coordination on the structure of l-phenylalanine, l-tyrosine, l-tryptophan and their zwitterionic forms. J. Mol. Model. 17, 3117–3128 (2011)CrossRefGoogle Scholar
  6. 6.
    Devi, K.V.S., Raju, B.R., Rao, G.N.: Effect of dielectric constant on protonation equlibria of L-dopa and 1,10-phenanthroline in dioxan–water mixtures. Acta Chim. Slov. 57, 398–404 (2010)Google Scholar
  7. 7.
    Daniele, P.G., Rigano, C., Sammartano, S.: Ionic strength dependence of formation constants–V: protonation constants of some nitrogen-containing ligands at different temperatures and ionic strengths. Talanta 32, 78–80 (1985)CrossRefGoogle Scholar
  8. 8.
    Capone, S., Robertis, A.D., Stefano, C.D., Scarcella, R.: Thermodynamics of formation of magnesium, calcium, strontium and barium complexes with 2,2′-bipyridyl and 1,10-phenanthroline, at different ionic strengths in aqueous solution. Talanta 32, 675–677 (1985)CrossRefGoogle Scholar
  9. 9.
    Robertis, A.D., Foti, C., Gianguzza, A., Rigano, C.: Protonation thermodynamics of 1,10-phenanthroline in aqueous solution. Salt effects and weak complex formation. J. Solution Chem. 25, 597–606 (1996)CrossRefGoogle Scholar
  10. 10.
    Bandyopadhyay, S., Mandal, A.K., Aditya, S.: Thermodynamics of 2,2′-dipyridinium ion and 1,10-phenanthrolinium ion in tert-butanol–water and glycerol–water media at 25. J. Indian Chem. Soc. 58, 467–473 (1981)Google Scholar
  11. 11.
    Bandyopadhyay, S., Mukherjee, G.N., Drew, M.G.B.: Equilibrium studies on mixed ligand complex formation of Co(II), Ni(II), Cu(II) and Zn(II) with N-(2-hydroxybenzyl)-l-histidine(H2hb-L-his) and typical N, N donor ligands: crystal structure of [Ni(hb-L-his) (bipyridine)] H2O complex. Inorg. Chim. Acta 359, 3243–3251 (2006)CrossRefGoogle Scholar
  12. 12.
    Eun-Jun, G., Xia, L., Qi-Tao, L.: Study on electronic effect and aromatic ring stacking of Pd(II)–aromatic diamine–aminoacid ternary complexes. Chinese J. Inorg. Chem. 18, 442–446 (2002)Google Scholar
  13. 13.
    Brisbin, D.A., McBryde, W.A.E.: The stability of metallic complexes of two dimethyl-phenanthrolines. Can. J. Chem. 41, 1135–1141 (1963)CrossRefGoogle Scholar
  14. 14.
    Yasuda, M., Sone, K., Yamasaki, K.: Stability of zinc and cadmium complexes with some methyl derivatives of 1,10-phenanthroline and 2,2′-bipyridine. J. Am. Chem. Soc. 60, 1667–1668 (1956)Google Scholar
  15. 15.
    Brandt, W.W., Gullstrom, D.K.: Studies on some ferrous complexes of substituted 1,10-phenanthrolines. J. Am. Chem. Soc. 74, 3532–3535 (1952)CrossRefGoogle Scholar
  16. 16.
    Banks, C.V., Bystroff, R.I.: Stability orders in transition metal-1,10-phenanthroline complexes. J. Am. Chem. Soc. 81, 6153–6158 (1959)CrossRefGoogle Scholar
  17. 17.
    Köseoğlu, F., Kılıç, E., Doğan, A.: Studies on protonation constants and solvation of α-amino acids in dioxan–water mixtures. Anal. Biochem. 277, 243–246 (2000)CrossRefGoogle Scholar
  18. 18.
    Demirelli, H., Köseoğlu, F.: Eqilibrium studies of Schiff bases and their complexes with Cu(II), Ni(II) and Zn(II) derived from salicylaldehyde and some α-amino acids. J. Solution Chem. 34, 561–577 (2005)CrossRefGoogle Scholar
  19. 19.
    Correia, I., Marcão, S., Koci, K., Tomaz, I., Adão, P., Kiss, T., Jakusch, T., Avecilla, F., Pessoa, J.C.: Vanadium(IV) and -(V) complexes of reduced Schiff bases derived from aromatic o-hydroxyaldehydes and tyrosine derivatives. Eur. J. Inorg. Chem. 2011, 694–708 (2011)CrossRefGoogle Scholar
  20. 20.
    Dallavalle, F., Folesani, G., Sabatini, A., Tegoni, M., Vacca, A.: Formation equilibria of ternary complexes of copper(II) with (S)-tryptophanhydroxamic acid and both D- and L-amino acids in aqueous solution. Polyhedron 20, 103–109 (2001)CrossRefGoogle Scholar
  21. 21.
    Podsiadły, H., Karwecka, Z.: Complexes of vanadium(III) with aromatic amino acids and l-proline in aqueous solution. Polyhedron 28, 1568–1572 (2009)CrossRefGoogle Scholar
  22. 22.
    Krishnamoorthy, C.R., Sunil, S., Ramalingam, K.: The effect of ligand donor atoms on ternary complex stability. Polyhedron 8, 1451–1456 (1985)CrossRefGoogle Scholar
  23. 23.
    Kholeif, S., Anderegg, G.: Equilibrium studies of aspartame and some of its degradation products with hydrogen(I) and copper(II) under physiological conditions using potentiometric pH measurements. Inorg. Chim. Acta 257, 225–230 (1997)CrossRefGoogle Scholar
  24. 24.
    Molchanov, A.S., Ledenkov, S.F.: Effect of a water–ethanol solvent on the stability of copper(II) complexes with l-tyrosine. Rus. J. Gen. Chem. 80, 219–222 (2010)CrossRefGoogle Scholar
  25. 25.
    Mohan, A., Yogi, D.S., Kumar, G.N., Mohan, M.S.: Influence of electronic, steric and stacking interactions in ternary Ni(II) and Cu(II) complexes containing 2,2′,2′’-terpyridine and a series of amino acids. Indian J. Chem. 32A, 785–788 (1993)Google Scholar
  26. 26.
    Yamauchi, O., Odani, A.: Structure-stability relationship in ternary copper(II) complexes involving aromatic amines and tyrosine or related amino acids. ıntramolecular aromatic ring stacking and its regulation through tyrosine phosphorylation. J. Am. Chem. Soc. 107, 5938–5945 (1985)CrossRefGoogle Scholar
  27. 27.
    Aydın, R., Yırıkoğulları, A.: Potentiometric study on complexation of divalent transition metal ions with amino acids and adenosine 5′-triphosphate. J. Chem. Eng. Data 55, 4794–4800 (2010)CrossRefGoogle Scholar
  28. 28.
    Aydin, R., Serbest, Z., Özer, U.: Formation of the complexes between lanthanum(III) ion and 5-sulfosalicylate, 5-nitrosalicylate. Rev. Inorg. Chem. 25, 271–283 (2005)CrossRefGoogle Scholar
  29. 29.
    Aydin, R.: Study on the interaction of yttrium(III) with adrenaline, noradrenaline, and dopamine. J. Chem. Eng. Data 52, 2400–2404 (2007)CrossRefGoogle Scholar
  30. 30.
    Aydin, R., İnci, D.: Potentiometric and spectrophotometric studies of the complexation of lanthanum(III) with adrenaline, noradrenaline, and dopamine. J. Chem. Eng. Data 57, 967–973 (2012)CrossRefGoogle Scholar
  31. 31.
    Martell, A.E., Motekaites, R.J.: Determination and Use of Stability Constants. VCH Publishers, New York (1989)Google Scholar
  32. 32.
    Gran, G.: Determination of the equivalent point in potentiometric titrations. Acta Chem. Scand. 4, 559–577 (1950)CrossRefGoogle Scholar
  33. 33.
    Rossotti, F.J.C., Rossotti, H.: Potentiometric titrations using gran plots. J. Chem. Educ. 42, 375–378 (1965)CrossRefGoogle Scholar
  34. 34.
    Schwarzenbach, G., Flaschka, A.: Complexometric Titrations. Methuen, New York (1969)Google Scholar
  35. 35.
    Patel, P.J., Patel, V.K., Bhattachanya, P.K.: Effect of two ligands on ternary complex stability. Inorg. Chem. 21, 3163–3166 (1982)CrossRefGoogle Scholar
  36. 36.
    Griesser, H., Sigel, H.: Ternary complexes in solution. VIII. Complex formation between the copper(II)-2,2′-bipyridyl l:1 complex and ligands containing oxygen and/or nitrogen as donor atoms. Inorg. Chem. 9, 1238–1242 (1970)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Arts and SciencesUludag UniversityBursaTurkey

Personalised recommendations