Skip to main content
Log in

Conformation of ATP and ADP Molecules in Aqueous Solutions Determined by High-Energy X-ray Diffraction

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

High-energy X-ray diffraction measurements were carried out at 26 °C for aqueous 1.0, 2.0 and 2.05 mol% disodium adenosine 5′-triphosphate (ATP) and 2.0 and 2.05 mol% disodium adenosine 5′-diphosphate (ADP) solutions in order to obtain direct experimental information on the intramolecular conformations of ATP and ADP molecules in aqueous solutions. Observed interference terms were analyzed in terms of the intramolecular geometry of the ATP and ADP molecules. Dihedral angles between adenine and the ribose group (t 1), ribose-ring and methylene group of ribose (t 2), and the methylene group of ribose and triphosphate (or diphosphate) group (t 3), were determined through the least-squares fitting procedure of the observed interference term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kennard, O., Isaacs, N.W., Motherwell, W.D.S., Coppora, J.C., Wamplar, D.L., Larson, A.C., Watson, D.G.: The crystal and molecular structure of adenosine triphosphate. Proc. R. Soc. Lond. A 325, 401–436 (1971)

    Article  CAS  Google Scholar 

  2. Larson, A.C.: Restrained refinement of disodium adenosine 5′-triphosphate trihydrate. Acta Cryst. B34, 3601–3604 (1978)

    Article  CAS  Google Scholar 

  3. Sugawara, Y., Kamiya, N., Iwasaki, H., Ito, T., Satow, Y.: Humidity-controlled reversible structure transition of disodium adenosine 5′-triphosphate between dehydrate and trihydrate in a single crystalline state. J. Am. Chem. Soc. 113, 5440–5445 (1991)

    Article  CAS  Google Scholar 

  4. Burke, R.M., Pearce, J.K., Boxford, P.W.E., Bruckmann, A., Dessent, C.E.: Stabilization of excess charge in isolated adenosine 5′-triphosphate and adenosine 5′-diphosphate multiply and singly charged anions. J. Phys. Chem. A 109, 9775–9785 (2005)

    Article  CAS  Google Scholar 

  5. Burke, R.M., Dessent, C.E.H.: Effect of cation complexation on the structure of a conformationally flexible multiply charged anion: stability of excess charge in the Na+·adenosine 5′-triphosphate dianion ion-pair complex. J. Phys. Chem. B 113, 2683–2692 (2009)

    Article  CAS  Google Scholar 

  6. Wang, P., Izatt, R.M., Oscarson, J.L., Gillespie, S.E.: 1H NMR study of protonation and Mg(II) coordination of AM, ADP, and ATP at 25, 50 and 70 °C. J. Phys. Chem. 100, 9556–9560 (1996)

    Article  CAS  Google Scholar 

  7. Kohara, S., Itou, M., Suzuya, K., Inamura, Y., Sakurai, Y., Ohishi, Y., Takata, M.: Structural studies of disordered materials using high-energy X-ray diffraction from ambient to extreme conditions. J. Phys. Condens. Matter 19, 1–15 (2007)

    Article  Google Scholar 

  8. Kohara, S., Suzuya, K., Kashihara, Y., Matsumoto, N., Umesaki, N., Sakai, I.: A horizontal two-axis diffractometer for high-energy X-ray diffraction using synchrotron radiation on bending magnet beamline BL04B2 at SPring-8. Nucl. Instrum. Method Phys. Res. Sect. A 467, 1030–1033 (2001)

    Article  Google Scholar 

  9. Issiki, M., Ohishi, Y., Goto, S., Takeshita, K., Ishikawa, T.: High-energy X-ray diffraction beamline BL04B2 at SPring-8. Nucl. Instrum. Method Phys. Res. Sect. A 467, 663–666 (2001)

    Article  Google Scholar 

  10. Waseda, Y.: The Structure of Non-Crystalline Materials. McGraw–Hill, New York (1980)

    Google Scholar 

  11. Sasaki, S.: X-ray absorption coefficients of the elements (Li to Bi, U), pp. 16–90. KEK Report, Koide (1990)

    Google Scholar 

  12. Hajdu, F.: Revised parameters of the analytic fits for coherent and incoherent scattered X-ray intensities of the first 36 atoms. Acta Crystallogr. Sect. A 28, 250–252 (1972)

    Article  CAS  Google Scholar 

  13. Kluwer, C.: International Tables for Crystallography. Academic Press, London (1999)

    Google Scholar 

  14. Habenshuss, A., Spedding, F.H.: The coordination (hydration) of rare earth ion in aqueous chloride solutions from X-ray diffraction. I. TbCl3, DyCl3, ErCl3, TmCl3, and LuCl3. J. Chem. Phys. 70, 2797–2806 (1979)

    Article  Google Scholar 

  15. Narten, A.H., Danford, M.D., Levy, H.A.: X-ray diffraction study of liquid water in the temperature range 4–200 °C. Discuss. Faraday Soc. 43, 97–107 (1967)

    Article  Google Scholar 

  16. Caminiti, R., Cucca, P., Monduzzi, M., Saba, G.: Divalent metal-acetate complexes in concentrated aqueous solutions. An X-ray diffraction and NMR spectroscopic study. J. Chem. Phys. 81, 543–551 (1984)

    Article  CAS  Google Scholar 

  17. Ohtaki, H., Fukushima, N.: A structural study of saturated aqueous solutions of some alkali halides by X-ray diffraction. J. Solution Chem. 21, 23–38 (1992)

    Article  CAS  Google Scholar 

  18. Clarke, H., Granada, J.R., Dore, J.C.: Structural studies of tetrachloride liquids I. Pulsed neutron scattering by carbon tetrachloride—Molecular structure. Mol. Phys. 37, 1263–1279 (1979)

    Article  Google Scholar 

  19. Powles, J.G.: The structure of the water molecule in liquid water. Mol. Phys. 42, 757–765 (1981)

    Article  CAS  Google Scholar 

  20. Kameda, Y., Uemura, O.: The intramolecular structure of oxonium ion in concentrated aqueous deuterochloric acid solutions. Bull. Chem. Soc. Jpn. 65, 2021–2028 (1992)

    Article  CAS  Google Scholar 

  21. Akola, J., Jones, R.O.: ATP hydrolysis in water—A density functional study. J. Phys. Chem. B 107, 11774–11783 (2003)

    Article  CAS  Google Scholar 

  22. Kameda, Y., Sugawara, K., Usuki, T., Uemura, O.: Hydration structure of Na+ in concentrated aqueous solutions. Bull. Chem. Soc. Jpn. 71, 2769–2776 (1998)

    Article  CAS  Google Scholar 

  23. Nakagawa, T., Oyanagi, Y.: Recent Development in Statistical Inference and Data Analysis, p. 221. North-Holland, Amsterdam (1980)

    Google Scholar 

  24. Enderby, J.E., Neilson, G.W.: X-ray and neutron scattering by aqueous solutions of electrolytes. In: Franks, F. (ed.) Water A Comprehensive Treatise, pp. 1–6. Plenum Press, New York (1979)

    Chapter  Google Scholar 

  25. Kameda, Y., Maki, A., Amo, Y., Usuki, T.: Partial pair correlation functions of highly concentrated aqueous urea solutions determined by neutron diffraction with 14N/15N and H/D isotopic substitution methods. Bull. Chem. Soc. Jpn. 83, 131–144 (2013)

    Article  Google Scholar 

  26. Mason, P., Neilson, G.W., Saboungi, M.-L., Brady, J.W.: The conformation of a ribose derivatives in aqueous solution: a neutron-scattering and molecular dynamics study. Biopolymers 99, 739–745 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Shinji Kohara (Japan Synchrotron Research Institute) for his help during X-ray diffraction measurements. The synchrotron radiation experiments were performed with the approval of JASRI (Proposal Nos. 2011A1368 and 2012B1509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Kameda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazaki, T., Kameda, Y., Umebayashi, Y. et al. Conformation of ATP and ADP Molecules in Aqueous Solutions Determined by High-Energy X-ray Diffraction. J Solution Chem 43, 1487–1498 (2014). https://doi.org/10.1007/s10953-014-0153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-014-0153-8

Keywords

Navigation