Advertisement

Journal of Solution Chemistry

, Volume 43, Issue 9–10, pp 1487–1498 | Cite as

Conformation of ATP and ADP Molecules in Aqueous Solutions Determined by High-Energy X-ray Diffraction

  • Takuya Miyazaki
  • Yasuo Kameda
  • Yasuhiro Umebayashi
  • Hiroyuki Doi
  • Yuko Amo
  • Takeshi Usuki
Article
  • 183 Downloads

Abstract

High-energy X-ray diffraction measurements were carried out at 26 °C for aqueous 1.0, 2.0 and 2.05 mol% disodium adenosine 5′-triphosphate (ATP) and 2.0 and 2.05 mol% disodium adenosine 5′-diphosphate (ADP) solutions in order to obtain direct experimental information on the intramolecular conformations of ATP and ADP molecules in aqueous solutions. Observed interference terms were analyzed in terms of the intramolecular geometry of the ATP and ADP molecules. Dihedral angles between adenine and the ribose group (t 1), ribose-ring and methylene group of ribose (t 2), and the methylene group of ribose and triphosphate (or diphosphate) group (t 3), were determined through the least-squares fitting procedure of the observed interference term.

Keywords

ATP ADP Intramolecular structure Conformation X-ray diffraction 

Notes

Acknowledgments

The authors would like to thank Dr. Shinji Kohara (Japan Synchrotron Research Institute) for his help during X-ray diffraction measurements. The synchrotron radiation experiments were performed with the approval of JASRI (Proposal Nos. 2011A1368 and 2012B1509).

References

  1. 1.
    Kennard, O., Isaacs, N.W., Motherwell, W.D.S., Coppora, J.C., Wamplar, D.L., Larson, A.C., Watson, D.G.: The crystal and molecular structure of adenosine triphosphate. Proc. R. Soc. Lond. A 325, 401–436 (1971)CrossRefGoogle Scholar
  2. 2.
    Larson, A.C.: Restrained refinement of disodium adenosine 5′-triphosphate trihydrate. Acta Cryst. B34, 3601–3604 (1978)CrossRefGoogle Scholar
  3. 3.
    Sugawara, Y., Kamiya, N., Iwasaki, H., Ito, T., Satow, Y.: Humidity-controlled reversible structure transition of disodium adenosine 5′-triphosphate between dehydrate and trihydrate in a single crystalline state. J. Am. Chem. Soc. 113, 5440–5445 (1991)CrossRefGoogle Scholar
  4. 4.
    Burke, R.M., Pearce, J.K., Boxford, P.W.E., Bruckmann, A., Dessent, C.E.: Stabilization of excess charge in isolated adenosine 5′-triphosphate and adenosine 5′-diphosphate multiply and singly charged anions. J. Phys. Chem. A 109, 9775–9785 (2005)CrossRefGoogle Scholar
  5. 5.
    Burke, R.M., Dessent, C.E.H.: Effect of cation complexation on the structure of a conformationally flexible multiply charged anion: stability of excess charge in the Na+·adenosine 5′-triphosphate dianion ion-pair complex. J. Phys. Chem. B 113, 2683–2692 (2009)CrossRefGoogle Scholar
  6. 6.
    Wang, P., Izatt, R.M., Oscarson, J.L., Gillespie, S.E.: 1H NMR study of protonation and Mg(II) coordination of AM, ADP, and ATP at 25, 50 and 70 °C. J. Phys. Chem. 100, 9556–9560 (1996)CrossRefGoogle Scholar
  7. 7.
    Kohara, S., Itou, M., Suzuya, K., Inamura, Y., Sakurai, Y., Ohishi, Y., Takata, M.: Structural studies of disordered materials using high-energy X-ray diffraction from ambient to extreme conditions. J. Phys. Condens. Matter 19, 1–15 (2007)CrossRefGoogle Scholar
  8. 8.
    Kohara, S., Suzuya, K., Kashihara, Y., Matsumoto, N., Umesaki, N., Sakai, I.: A horizontal two-axis diffractometer for high-energy X-ray diffraction using synchrotron radiation on bending magnet beamline BL04B2 at SPring-8. Nucl. Instrum. Method Phys. Res. Sect. A 467, 1030–1033 (2001)CrossRefGoogle Scholar
  9. 9.
    Issiki, M., Ohishi, Y., Goto, S., Takeshita, K., Ishikawa, T.: High-energy X-ray diffraction beamline BL04B2 at SPring-8. Nucl. Instrum. Method Phys. Res. Sect. A 467, 663–666 (2001)CrossRefGoogle Scholar
  10. 10.
    Waseda, Y.: The Structure of Non-Crystalline Materials. McGraw–Hill, New York (1980)Google Scholar
  11. 11.
    Sasaki, S.: X-ray absorption coefficients of the elements (Li to Bi, U), pp. 16–90. KEK Report, Koide (1990)Google Scholar
  12. 12.
    Hajdu, F.: Revised parameters of the analytic fits for coherent and incoherent scattered X-ray intensities of the first 36 atoms. Acta Crystallogr. Sect. A 28, 250–252 (1972)CrossRefGoogle Scholar
  13. 13.
    Kluwer, C.: International Tables for Crystallography. Academic Press, London (1999)Google Scholar
  14. 14.
    Habenshuss, A., Spedding, F.H.: The coordination (hydration) of rare earth ion in aqueous chloride solutions from X-ray diffraction. I. TbCl3, DyCl3, ErCl3, TmCl3, and LuCl3. J. Chem. Phys. 70, 2797–2806 (1979)CrossRefGoogle Scholar
  15. 15.
    Narten, A.H., Danford, M.D., Levy, H.A.: X-ray diffraction study of liquid water in the temperature range 4–200 °C. Discuss. Faraday Soc. 43, 97–107 (1967)CrossRefGoogle Scholar
  16. 16.
    Caminiti, R., Cucca, P., Monduzzi, M., Saba, G.: Divalent metal-acetate complexes in concentrated aqueous solutions. An X-ray diffraction and NMR spectroscopic study. J. Chem. Phys. 81, 543–551 (1984)CrossRefGoogle Scholar
  17. 17.
    Ohtaki, H., Fukushima, N.: A structural study of saturated aqueous solutions of some alkali halides by X-ray diffraction. J. Solution Chem. 21, 23–38 (1992)CrossRefGoogle Scholar
  18. 18.
    Clarke, H., Granada, J.R., Dore, J.C.: Structural studies of tetrachloride liquids I. Pulsed neutron scattering by carbon tetrachloride—Molecular structure. Mol. Phys. 37, 1263–1279 (1979)CrossRefGoogle Scholar
  19. 19.
    Powles, J.G.: The structure of the water molecule in liquid water. Mol. Phys. 42, 757–765 (1981)CrossRefGoogle Scholar
  20. 20.
    Kameda, Y., Uemura, O.: The intramolecular structure of oxonium ion in concentrated aqueous deuterochloric acid solutions. Bull. Chem. Soc. Jpn. 65, 2021–2028 (1992)CrossRefGoogle Scholar
  21. 21.
    Akola, J., Jones, R.O.: ATP hydrolysis in water—A density functional study. J. Phys. Chem. B 107, 11774–11783 (2003)CrossRefGoogle Scholar
  22. 22.
    Kameda, Y., Sugawara, K., Usuki, T., Uemura, O.: Hydration structure of Na+ in concentrated aqueous solutions. Bull. Chem. Soc. Jpn. 71, 2769–2776 (1998)CrossRefGoogle Scholar
  23. 23.
    Nakagawa, T., Oyanagi, Y.: Recent Development in Statistical Inference and Data Analysis, p. 221. North-Holland, Amsterdam (1980)Google Scholar
  24. 24.
    Enderby, J.E., Neilson, G.W.: X-ray and neutron scattering by aqueous solutions of electrolytes. In: Franks, F. (ed.) Water A Comprehensive Treatise, pp. 1–6. Plenum Press, New York (1979)CrossRefGoogle Scholar
  25. 25.
    Kameda, Y., Maki, A., Amo, Y., Usuki, T.: Partial pair correlation functions of highly concentrated aqueous urea solutions determined by neutron diffraction with 14N/15N and H/D isotopic substitution methods. Bull. Chem. Soc. Jpn. 83, 131–144 (2013)CrossRefGoogle Scholar
  26. 26.
    Mason, P., Neilson, G.W., Saboungi, M.-L., Brady, J.W.: The conformation of a ribose derivatives in aqueous solution: a neutron-scattering and molecular dynamics study. Biopolymers 99, 739–745 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Takuya Miyazaki
    • 1
  • Yasuo Kameda
    • 1
  • Yasuhiro Umebayashi
    • 2
  • Hiroyuki Doi
    • 2
  • Yuko Amo
    • 1
  • Takeshi Usuki
    • 1
  1. 1.Department of Material and Biological Chemistry, Faculty of ScienceYamagata UniversityYamagataJapan
  2. 2.Graduate School of Science and TechnologyNiigata UniversityNiigataJapan

Personalised recommendations