Advertisement

Journal of Solution Chemistry

, Volume 43, Issue 2, pp 298–313 | Cite as

Acid Dissociation Constants and Rare Earth Stability Constants for DTPA

  • Travis S. Grimes
  • Kenneth L. Nash
Article

Abstract

Diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid (DTPA) is an octadentate aminopolycarboxylate complexing agent whose f-element complexes find important practical applications in nuclear medicine and in advanced nuclear fuel reprocessing. This investigation focuses primarily on the latter application, specifically on characterization of lanthanide–DTPA complexes of relevance to the Trivalent Actinide–Lanthanide Separations by Phosphorus reagent Extraction and Aqueous Komplexants (TALSPEAK) process. To function acceptably, the TALSPEAK process requires the presence of moderate concentrations (0.5–2.0 mol·L−1) of a (Na+/H+) lactate (or citrate) buffer. Competition between DTPA, lactate, and the extractant bis(2-ethylhexyl)phosphoric acid (HDEHP) for the lanthanides and trivalent actinides governs the course of the extraction process. To facilitate modeling and to support process improvements, the acid dissociation constants and stability constants for rare earth complexes with DTPA have been determined in 2.0 mol·L−1 ionic strength (NaClO4) media. The acid dissociation constants for DTPA and the stability constant for [Eu(DTPA)]2− also were determined in sodium trifluoromethanesulfonate at 2.0 mol·L−1 ionic strength to evaluate the potential impact of changing the nature of the electrolyte. The thermodynamic data are compared with earlier reports of similar data at lower ionic strength and used to complete calculations exploring the relative stability of lanthanide–DTPA and lactate complexes under TALSPEAK extraction conditions. Lanthanide–DTPA stability trends are discussed in comparison with literature data on a variety of other metal ions.

Keywords

DTPA Lanthanides Complexation Thermodynamics Stability constants TALSPEAK 

Notes

Acknowledgments

This work was supported at Washington State University by the U.S. Department of Energy, Office of Nuclear Energy Science and Technology, Fuel Cycle Research and Development (FCRD) Program, Minor Actinide Separations Sigma Team and in part under the Nuclear Energy Research Initiative—Consortium (NERI-C) program under contract number DE-FC07-02ID14896.

References

  1. 1.
    Lewis, G.N., Randall, M.: The activity coefficient of strong electrolytes. J. Am. Chem. Soc. 43, 1112–1154 (1921)CrossRefGoogle Scholar
  2. 2.
    Brønsted, J.N.: The activity of electrolytes. Trans. Faraday Soc. 23, 416–439 (1927)CrossRefGoogle Scholar
  3. 3.
    Ellilä, A.: Ionization of acetic acid in aqueous alkali salt solutions. Ann. Acad. Sci. Fenn. Ser. A 51, 7–62 (1953)Google Scholar
  4. 4.
    Ellilä, A.: Ionization of acetic acid in electrolyte solutions. Acta Chem. Scand. 8, 1257–1274 (1954)CrossRefGoogle Scholar
  5. 5.
    Elizalde, M.P., Aparicio, J.L.: Current theories in the calculation of activity coefficients–II. Specific interaction theories applied to some equilibria studies in solution chemistry. Talanta 42(3), 395–400 (1995)CrossRefGoogle Scholar
  6. 6.
    Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Chem. Phys. 77, 268–277 (1973)CrossRefGoogle Scholar
  7. 7.
    Pitzer, K.S., Guillermo, M.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Chem. Phys. 77, 2300–2308 (1973)CrossRefGoogle Scholar
  8. 8.
    Pitzer, K.S. Activity Coefficients in Electrolyte Solutions. CRC Press, Boca Raton, FL; ISBN 0–8493–5415–3 (1991)Google Scholar
  9. 9.
    Daniele, P.G., Rigano, C., Sammartano, S.: Ionic strength dependence of formation constants–I: Protonation constants of organic and inorganic acids. Talanta 30, 81–87 (1983)CrossRefGoogle Scholar
  10. 10.
    Daniele, P.G., Rigano, C., Sammartano, S.: Ionic strength dependence of formation constants-V: Protonation constants of some nitrogen-containing ligands at different temperatures and ionic strengths. Talanta 32, 78–80 (1985)CrossRefGoogle Scholar
  11. 11.
    Vilariño, T., Fiol, S., Armest, X.L., Brandariz, I., Sastre de Vicente, M.E.: Effect of ionic strength on the protonation of various amino acids analysed by the mean spherical approximation. J. Chem. Soc. Faraday Trans. 93, 413–417 (1997)CrossRefGoogle Scholar
  12. 12.
    Alonso, P., Barriada, J.L., Rodriguez, P., Brandariz, I., Sastre de Vicente, M.E.: Acid–base equilibrium constants for glycine in NaClO4, KCl, and KBr at 298 K. Dependence on ionic strength. J. Chem. Eng. Data 43, 876–879 (1998)CrossRefGoogle Scholar
  13. 13.
    Thakur, P., Mathur, J.N., Moore, R.C., Choppin, G.R.: Thermodynamics and dissociation constants of carboxylic acids at high ionic strength and temperature. Inorg. Chim. Acta 360, 3671–3680 (2007)CrossRefGoogle Scholar
  14. 14.
    Choppin, G.R., Erten, H.N., Xia, Y.-X.: Variation of stability constants of thorium citrate complexes and of thorium hydrolysis constants with ionic strength. Radiochim. Acta 74, 123–127 (1996)Google Scholar
  15. 15.
    Li, B., Byrne, R.H.: Ionic strength dependence of rare earth–NTA stability constants at 25 °C. Aquat. Geochem. 3, 99–115 (1997)CrossRefGoogle Scholar
  16. 16.
    Luo, Y.-R., Byrne, R.H.: The influence of ionic strength on yttrium and rare earth element complexation by fluoride ions in NaClO4, and NaNO3 and NaCl solutions at 25 °C. J. Solution Chem. 36, 673–689 (2007)CrossRefGoogle Scholar
  17. 17.
    Frost, A.E.: Polyaminopolycarboxylic acids derived from polyethyleneamines. Nature 178, 322 (1956)CrossRefGoogle Scholar
  18. 18.
    Harder, R., Chaberek, S.: The interaction of rare earth ions with diethylenetriaminepentaacetic acid. J. Inorg. Nucl. Chem. 11, 197–209 (1958)CrossRefGoogle Scholar
  19. 19.
    Durham, E.J., Ryskiewich, D.P.: The acid dissociation constants of diethylenetriaminepentaacetic acid and the stability constants of some of its metal chelates. J. Am. Chem. Soc. 80, 4812–4817 (1958)CrossRefGoogle Scholar
  20. 20.
    Moeller, T., Thompson, L.C.: Observations on the rare earths–LXXV: The stabilities of diethylenetriaminepentaacetic acid chelates. J. Inorg. Nucl. Chem. 24, 499–510 (1962)CrossRefGoogle Scholar
  21. 21.
    Baybarz, R.D.: Dissociation constants of the transplutonium element chelates of diethylenetriaminepentaacetic acid (DTPA) and the application of DTPA chelates to solvent extraction separations of transplutonium elements from the lanthanide elements. J. Inorg. Nucl. Chem. 27, 1831–1839 (1965)CrossRefGoogle Scholar
  22. 22.
    Mehdi, S.H., Budesinsky, B.W.: Protonated metal complexes of diethylenetriaminepentaacetic acid (DTPA). J. Coord. Chem. 3, 287–292 (1974)CrossRefGoogle Scholar
  23. 23.
    Gritmon, T.F., Goedken, M.P., Choppin, G.R.: The complexation of lanthanides by aminocarboxylate ligands–I: Stability Constants. J. Inorg. Nucl. Chem. 39, 2021–2023 (1977)CrossRefGoogle Scholar
  24. 24.
    Mioduski, T.: Protonation constants of 1-hydroxyethylidene-1,1-diphosphonic acid, diethylenetriamino-N,N,N′,N″,N″-penta-acetic acid and trans-1,2-diaminocyclohexane-N,N,N′,N′-tetra-acetic acid. Talanta 27, 299–303 (1980)CrossRefGoogle Scholar
  25. 25.
    Kragten, J., Decnop-Weever, L.G.: Solubility and protonation of EDTA, DCTA, and DTPA in acidic perchlorate medium. Talanta 30, 623–626 (1983)CrossRefGoogle Scholar
  26. 26.
    Sudmeier, J.L., Reilley, C.N.: Nuclear magnetic resonance studies of protonation of polyamine and aminocarboxylate compounds in aqueous solution. Anal. Chem. 36, 1698–1706 (1964)CrossRefGoogle Scholar
  27. 27.
    Letkeman, P., Martell, A.E.: Nuclear magnetic resonance and potentiometric protonation study of polyaminopolyacetic acids containing from two to six nitrogen atoms. Inorg. Chem. 18, 1284–12289 (1979)CrossRefGoogle Scholar
  28. 28.
    Weaver, B., Kapplemann, F.A.: TALSPEAK: A new method of separating americium and curium from the lanthanides by extraction from and aqueous solution of an aminopolyacetic acid complex with a monoacidic organophosphate or phosphonate. ORNL-3559, Oak Ridge (1964)Google Scholar
  29. 29.
    Weaver, B., Kapplemann, F.A.: Preferential extraction of lanthanides over trivalent actinides by monoacidic organophosphates from carboxylic acids and from mixtures of carboxylic and aminopolyacetic acids. J. Inorg. Nucl. Chem. 30, 263–272 (1960)CrossRefGoogle Scholar
  30. 30.
    Nilsson, M., Nash, K.L.: Review of the development and operational characteristics of the TALSPEAK process. Solvent Extr. Ion Exch. 25, 665–701 (2007)CrossRefGoogle Scholar
  31. 31.
    Kolařík, Z., Kuhn, W.: Acid organophosphorus-XXI. Kinetics and equilibriums of extraction of Eu(III) by di(2-ethylhexyl) phosphoric acid from complexing media. In: International Solvent Extraction Conference, ISEC 74, Lyon, 8–14th September, pp. 2593–2606 (1974)Google Scholar
  32. 32.
    Tachimori, S., Nakamura, T.: Radiation effects on the separation of lanthanides and transplutonides by the TALSPEAK-type extraction. J. Radioanal. Chem. 52, 343–354 (1979)CrossRefGoogle Scholar
  33. 33.
    Armarego, W.L.F., Chai, C.L.L.: Purification of Laboratory Chemicals. Butterworth–Heinemann, New York (2003)Google Scholar
  34. 34.
    Spectral database for organic compounds, SDBS. http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_search.cgi (2012). Accessed May 2012
  35. 35.
    Zekany, L., Nagypal, I.: PSEQUAD: A comprehensive program for the evaluation of potentiometric and/or spectrophotometric equilibrium data using analytical derivatives. In: Legget, D.J. (ed.) Computational Methods for the Determination of Formation Constants. Plenum, New York (1985)Google Scholar
  36. 36.
    Rossotti, F., Rossotti, H.: Potentiometric titrations using gran plots: A textbook omission. J. Chem. Educ. 42, 375–378 (1965)CrossRefGoogle Scholar
  37. 37.
    Martell, A.E., Smith, R.S., Motekaitis, R.J.: NIST critically selected stability constants of metal complexes. NIST Standard Reference Database 46 Version 8.0, Maryland (2004)Google Scholar
  38. 38.
    Tian, G., Rao, L.: Effect of temperature on the protonation of the TALSPEAK ligands: Lactic acid and diethylenetrinitropentaacetic acids. Sep. Sci. Technol. 45, 1718–1724 (2010)CrossRefGoogle Scholar
  39. 39.
    Zalupski, P.R., Nash, K.L., Martin, L.R.: Thermodynamic features of the complexation of neodymium(III) and americium(III) by lactate in trifluoromethanesulfonate media. J. Solution Chem. 39, 1213–1229 (2010)CrossRefGoogle Scholar
  40. 40.
    Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)CrossRefGoogle Scholar
  41. 41.
    Choppin, G.R., Goedken, M.P., Gritmon, T.F.: The complexation of lanthanides by aminocarboxylate ligands–II: Thermodynamic parameters. J. Inorg. Nucl. Chem. 39, 2025–2030 (1977)CrossRefGoogle Scholar
  42. 42.
    Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A.: Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184, 311–318 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of ChemistryWashington State UniversityPullmanUSA
  2. 2.Aqueous Separations and Radiochemistry DepartmentIdaho National LaboratoryIdaho FallsUSA

Personalised recommendations