Journal of Solution Chemistry

, Volume 43, Issue 2, pp 340–359 | Cite as

Thermophysical and Spectroscopic Studies of Pure 1-Butyl-3-methylimidazolium Tetrafluoroborate and Its Aqueous Mixtures

  • Ganga Ram Chaudhary
  • Shafila Bansal
  • S. K. Mehta
  • A. S. Ahluwalia


Intermolecular interactions in the aqueous mixtures of the room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), have been studied. The thermophysical properties: density ρ, speed of sound u, specific conductivity κ and refractive index n D have been measured over the whole composition range at different temperatures (293.15–323.15 K) and are discussed. The results from thermophysical measurements are explained with the help of spectroscopy. In order to interpret the nature of molecular interactions occurring between [BMIM][BF4] and water molecules, as well as to identify the moieties in which interactions are taking place, 1H, 13C NMR and FT-IR spectra of the solutions have been studied. Excess molar volume V E, excess molar isentropic compressibility \( K_{S}^{\text{E}} \), partial molar excess volume \( V_{i}^{\text{E}} \), partial molar excess isentropic compressibility \( K_{S,i}^{\text{E}} \), deviation in specific conductivity ∆κ, and deviation in refractive index ∆R have also been determined and analyzed to have a better understanding of the interactions taking place between the different components. Additionally, the excess ultrasonic speed u E and excess isentropic compressibility \( k_{S}^{\text{E}} \), in terms of volume fractions, have been calculated and analyzed. It has been observed that temperature has a significant effect on the thermophysical properties of the studied system. Spectroscopic measurements confirm the disruption of ion-pair interactions of [BMIM][BF4] and hydrogen-bonded network of water in the aqueous mixture of [BMIM][BF4].


Thermophysical Spectroscopy Temperature 1-Butyl-3-methylimidazolium tetrafluoroborate Aqueous mixtures 



The authors, Ganga Ram Chaudhary and Shafila Bansal, thank the UGC (India) for financial assistance.

Supplementary material

10953_2014_137_MOESM1_ESM.docx (373 kb)
Supplementary material 1 (DOCX 373 kb)


  1. 1.
    Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999)CrossRefGoogle Scholar
  2. 2.
    Dullius, J.E.L., Suarez, P.A.Z., Einloft, S., de Souza, R.F., Dupont, J., Fischer, J., De Cian, A.: Selective catalytic hydrodimerization of 1,3-butadiene by palladium compounds dissolved in ionic liquids. Organometallics 17, 815–819 (1998)CrossRefGoogle Scholar
  3. 3.
    Chiappe, C., Pieraccini, D., Saullo, P.: Nucleophilic displacement reactions in ionic liquids: substrate and solvent effect in the reaction of NaN3 and KCN with alkyl halides and tosylates. J. Org. Chem. 68, 6710–6715 (2003)CrossRefGoogle Scholar
  4. 4.
    Dupont, J., de Souza, R.F., Suarez, P.A.Z.: Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 102, 3667–3692 (2002)CrossRefGoogle Scholar
  5. 5.
    Wasserscheid, P., Keim, W.: Ionic liquids–new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. Engl. 39, 3772–3789 (2000)CrossRefGoogle Scholar
  6. 6.
    Earle, M.J., Seddon, K.R.: Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72, 1391–1398 (2000)CrossRefGoogle Scholar
  7. 7.
    Branco, L.C., Crespo, J.G., Afonso, C.A.M.: Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids. Angew. Chem. Int. Ed. 41, 2771–2773 (2002)CrossRefGoogle Scholar
  8. 8.
    Fadeev, A.G., Meagher, M.M.: Opportunities for ionic liquids in recovery of biofuels. Chem. Commun. 295–296 (2001)Google Scholar
  9. 9.
    Huddleston, J.G., Willauer, H.D., Swatloski, R.P., Visser, A.E., Rogers, R.D.: Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem. Commun. 1765–1766 (1998)Google Scholar
  10. 10.
    Sánchez, L.M.G., Meindersma, G.W., de Haan, A.B.: Kinetics of absorption of CO2 in amino-functionalized ionic liquids. Chem. Eng. J. 166, 1104–1115 (2011)CrossRefGoogle Scholar
  11. 11.
    Cull, S.G., Holbrey, J.D., Vargas-Mora, V., Seddon, K.R., Lye, G.J.: Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol. Bioeng. 69, 227–233 (2000)CrossRefGoogle Scholar
  12. 12.
    Sato, T., Masuda, G., Takagi, K.: Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim. Acta 49, 3603–3611 (2004)CrossRefGoogle Scholar
  13. 13.
    De Souza, R.F., Padilha, J.C., Gonçalves, R.S., Dupont, J.: Room temperature dialkylimidazolium ionic liquid-based fuel cells. Electrochem. Commun. 5, 728–731 (2003)CrossRefGoogle Scholar
  14. 14.
    Sánchez, L.M.G., Meindersma, G.W., De Haan, A.B.: Solvent properties of functionalized Ionic liquids for CO2 absorption. Chem. Eng. Res. Des. 85, 31–39 (2007)CrossRefGoogle Scholar
  15. 15.
    Chen, P.-Y., Hussey, C.L.: The electrodeposition of Mn and Zn–Mn alloys from the room-temperature tri-1-butylmethylammonium bis((trifluoromethane)sulfonyl)imide ionic liquid. Electrochim. Acta 52, 1857–1864 (2007)CrossRefGoogle Scholar
  16. 16.
    Verdía, P., González, E.J., Rodríguez-Cabo, B., Tojo, E.: Synthesis and characterization of new polysubstituted pyridinium-based ionic liquids: application as solvents on desulfurization of fuel oils. Green Chem. 13, 2768–2776 (2011)CrossRefGoogle Scholar
  17. 17.
    Papaiconomou, N., Yakelis, N., Salminen, J., Bergman, R., Prausnitz, J.M.: Synthesis and properties of seven ionic liquids containing 1-methyl-3-octylimidazolium or 1-butyl-4-methylpyridinium cations. J. Chem. Eng. Data 51, 1389–1393 (2006)CrossRefGoogle Scholar
  18. 18.
    Fukumoto, K., Yoshizawa, M., Ohno, H.: Room temperature ionic liquids from 20 natural amino acids. J. Am. Chem. Soc. 127, 2398–2399 (2005)CrossRefGoogle Scholar
  19. 19.
    Burrell, A.K., Sesto, R.E.D., Baker, S.N., McCleskeya, T.M., Baker, G.A.: The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. Green Chem. 9, 449–454 (2007)CrossRefGoogle Scholar
  20. 20.
    Bradaric, C.J., Downard, A., Kennedy, C., Robertson, A.J., Zhou, Y.: Industrial preparation of phosphonium ionic liquids. Green Chem. 5, 143–152 (2003)CrossRefGoogle Scholar
  21. 21.
    Gomez, E., Calvar, N., Dominguez, A., Macedo, E.A.: Synthesis and temperature dependence of physical properties of four pyridinium-based ionic liquids: influence of the size of the cation. J. Chem. Thermodyn. 42, 1324–1329 (2010)Google Scholar
  22. 22.
    Sharifi, A., Barazandeh, M., Abaee, M.S., Mirzaei, M.: [Omim][BF4], a green and recyclable ionic liquid medium for the one-pot chemoselective synthesis of benzoxazinones. Tetrahedron Lett. 51, 1852–1855 (2010)CrossRefGoogle Scholar
  23. 23.
    Dupont, N., Grenouillet, P., Bornette, F., De Bellefon, C.: Switching from water to ionic liquids for the production of methylchloride: catalysis and reactor issues. Chem. Eng. J. 145, 441–445 (2009)CrossRefGoogle Scholar
  24. 24.
    Park, S., Kazlauskas, R.J.: Biocatalysis in ionic liquids—advantages beyond green technology. Curr. Opin. Biotechnol. 14, 432–437 (2003)CrossRefGoogle Scholar
  25. 25.
    Sheldon, R.A., Lau, R.M., Sorgedrager, M.J., Van Rantwijka, F., Seddon, K.R.: Biocatalysis in ionic liquids. Green Chem. 4, 147–151 (2002)CrossRefGoogle Scholar
  26. 26.
    Yang, Q., Xing, H., Su, B., Yu, K., Bao, Z., Yang, Y., Ren, Q.: Improved separation efficiency using ionic liquid–cosolvent mixtures as the extractant in liquid–liquid extraction: A multiple adjustment and synergistic effect. Chem. Eng. J. 181–182, 334–342 (2012)CrossRefGoogle Scholar
  27. 27.
    Khupse, N.D., Kumar, A.: The cosolvent-directed Diels–Alder reaction in ionic liquids. J. Phys. Chem. A 115, 10211–10217 (2011)CrossRefGoogle Scholar
  28. 28.
    Gericke, M., Liebert, T., El Seoud, O.A., Heinze, T.: Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures. Macromol. Mater. Eng. 296, 483–493 (2011)CrossRefGoogle Scholar
  29. 29.
    Chaudhary, G.R., Bansal, S., Mehta, S.K., Ahluwalia, A.S.: Thermophysical and spectroscopic studies of room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate in tritons. J. Chem. Thermodyn. 50, 63–70 (2012)Google Scholar
  30. 30.
    Liu, W., Cheng, L., Zhang, Y., Wang, H., Yu, M.: The physical properties of aqueous solution of room-temperature ionic liquids based on imidazolium: database and evaluation. J. Mol. Liq. 140, 68–72 (2008)CrossRefGoogle Scholar
  31. 31.
    Liu, W., Zhao, T., Zhang, Y., Wang, H., Yu, M.: The physical properties of aqueous solutions of the ionic liquid [BMIM][BF4]. J. Solution Chem. 35, 1337–1346 (2006)CrossRefGoogle Scholar
  32. 32.
    Zhou, Q., Wang, L.-S., Chen, H.-P.: Densities and viscosities of 1-butyl-3-methylimidazolium tetrafluoroborate + H2O binary mixtures from (303.15 to 353.15) K. J. Chem. Eng. Data 51, 905–908 (2006)CrossRefGoogle Scholar
  33. 33.
    Yu, Y.-H., Soriano, A.N., Li, M.-H.: Heat capacity and electrical conductivity of aqueous mixtures of [Bmim][BF4] and [Bmim][PF6]. J. Taiwan Inst. Chem. Eng. 40, 205–212 (2009)CrossRefGoogle Scholar
  34. 34.
    Rilo, E., Vila, J., Pico, J., García-Garabal, S., Segade, L., Varela, L.M., Cabeza, O.: Electrical conductivity and viscosity of aqueous binary mixtures of 1-alkyl-3-methyl imidazolium tetrafluoroborate at four temperatures. J. Chem. Eng. Data 55, 639–644 (2010)CrossRefGoogle Scholar
  35. 35.
    Malham, I.B., Turmine, M.: Viscosities and refractive indices of binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate with water at 298 K. J. Chem. Thermodyn. 40, 718–723 (2008)Google Scholar
  36. 36.
    García-Miaja, G., Troncoso, J., Romaní, L.: Excess enthalpy, density, and heat capacity for binary systems of alkylimidazolium-based ionic liquids + water. J. Chem. Thermodyn. 41, 161–166 (2009)Google Scholar
  37. 37.
    Jacquemin, J., Husson, P., Padua, A.A.H., Majer, V.: Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 8, 172–180 (2006)CrossRefGoogle Scholar
  38. 38.
    Rilo, E., Picoa, J., García-Garabala, S., Varela, L.M., Cabezaa, O.: Density and surface tension in binary mixtures of CnMIM–BF4 ionic liquids with water and ethanol. Fluid Phase Equilib. 285, 83–89 (2009)CrossRefGoogle Scholar
  39. 39.
    Grishina, E.P., Ramenskaya, L.M., Gruzdev, M.S., Kraeva, O.V.: Water effect on physicochemical properties of 1-butyl-3-methylimidazolium based ionic liquids with inorganic anions. J. Mol. Liq. 177, 267–272 (2013)CrossRefGoogle Scholar
  40. 40.
    Gu, Z., Brennecke, J.F.: Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. J. Chem. Eng. Data 47, 339–345 (2002)CrossRefGoogle Scholar
  41. 41.
    Zheng, Y.-Z., Wang, N.-N., Luo, J.-J., Zhou, Y., Yu, Z.-W.: Hydrogen-bonding interactions between [BMIM][BF4] and acetonitrile. Phys. Chem. Chem. Phys. 15, 18055–18064 (2013)CrossRefGoogle Scholar
  42. 42.
    Synthesis and physicochemical characterization of imidazolium based ionic liquids. Accessed 11 Sept 2013
  43. 43.
    Pal, A., Kumar, B.: Volumetric and acoustic properties of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] with alkoxyalkanols at different temperatures. J. Chem. Eng. Data 57, 688–695 (2012)CrossRefGoogle Scholar
  44. 44.
    Iglesias-Otero, M.A., Troncoso, J., Carballo, E., Romaní, L.: Density and refractive index for binary systems of the ionic liquid [Bmim][BF4] with methanol, 1,3-dichloropropane, and dimethyl carbonate. J. Solution Chem. 36, 1219–1230 (2007)CrossRefGoogle Scholar
  45. 45.
  46. 46.
    Espiritu, E.S., Soriano, A.N., Li, M.-H.: Thermophysical property characterization of ternary system containing {glycol (DEG/TEG/T4EG) + 2-amino-2-hydroxymethyl-1,3-propanediol + water}. J. Chem. Thermodyn. 59, 121–126 (2013)Google Scholar
  47. 47.
    Alvarez, V.H., Mattedi, S., Martin-Pastor, M., Aznar, M., Iglesias, M.: Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}. J. Chem. Thermodyn. 43, 997–1010 (2011)Google Scholar
  48. 48.
    Yu, Y.-H., Soriano, A.N., Li, M.-H.: Heat capacities and electrical conductivities of 1-n-butyl-3-methylimidazolium-based ionic liquids. Thermochim. Acta 482, 42–48 (2009)CrossRefGoogle Scholar
  49. 49.
    Douhèret, G., Davis, M.I., Fjellanger, I.J., Høiland, H.: Ultrasonic speeds and volumetric properties of binary mixtures of water with poly(ethylene glycol)s at 298.15 K. J. Chem. Soc. Faraday Trans. I 93, 1943–1949 (1997)CrossRefGoogle Scholar
  50. 50.
    Benson, G.C., Kiyohara, O.: Evaluation of excess isentropic compressibilities and isochoric heat capacities. J. Chem. Thermodyn. 11, 1061–1064 (1979)Google Scholar
  51. 51.
    Iloukhani, H., Ghorbani, R.: Volumetric properties of N,N-dimethylformamide with 1,2-alkanediols at 20 °C. J. Solution Chem. 27, 141–149 (1998)CrossRefGoogle Scholar
  52. 52.
    Benson, G.C., Handa, Y.P.: Ultrasonic speeds and isentropic compressibilities for (decan-l-ol + n-alkane) at 298.15 K. J. Chem. Thermodyn. 13, 887–896 (1981)Google Scholar
  53. 53.
    Savaroglu, G., Aral, E.: Densities, speed of sound and isentropic compressibilities of the ternary mixture 2-propanol + acetone + cyclohexane and the constituent binary mixtures at 298.15 and 313.15 K. Fluid Phase Equilib. 215, 253–262 (2004)CrossRefGoogle Scholar
  54. 54.
    Douhéret, G., Davis, M.I., Reis, J.C.R., Blandamer, M.J.: Isentropic compressibilities-experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures. Chem. Phys. Chem. 2, 148–161 (2001)CrossRefGoogle Scholar
  55. 55.
    Brocos, P., Piñeiro, A., Bravo, R., Amigo, A.: Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations. Phys. Chem. Chem. Phys. 5, 550–557 (2003)CrossRefGoogle Scholar
  56. 56.
    Rilo, E., Domínguez-Pérez, M., Vila, J., Segade, L., García, M., Varela, L.M., Cabeza, O.: Easy prediction of the refractive index for binary mixtures of ionic liquids with water or ethanol. J. Chem. Thermodyn. 47, 219–222 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ganga Ram Chaudhary
    • 1
  • Shafila Bansal
    • 2
  • S. K. Mehta
    • 1
  • A. S. Ahluwalia
    • 3
  1. 1.Department of Chemistry & Centre of Advanced Studies in ChemistryPanjab UniversityChandigarhIndia
  2. 2.Department of Environment StudiesPanjab UniversityChandigarhIndia
  3. 3.Department of BotanyPanjab UniversityChandigarhIndia

Personalised recommendations