Advertisement

Journal of Solution Chemistry

, Volume 42, Issue 4, pp 764–771 | Cite as

Solubility Measurements and Prediction of Coenzyme Q10 Solubility in Different Solvent Systems

  • Yin Zhao
  • Yan-Hong Sun
  • Zhi-Yong Li
  • Chuang Xie
  • Ying Bao
  • Zhi-Jian Chen
  • Jun-Bo Gong
  • Qiu-Xiang Yin
  • Wei Chen
  • Cui Zhang
Article

Abstract

The solubility of coenzyme Q10 in ethyl acetate, n-hexane, 1-butanol, 1-propanol, 2-propanol and ethanol in the temperature range 270.15–320.15 K, under atmospheric pressure, was measured by a gravimetric method and compared with the data predicted using the conductor like screening model for realistic solvation (COSMO-RS) method. The results show that the solubilities of coenzyme Q10 in the above solvents increase with temperature. The temperature dependences of predicted solubilities were consistent with the experimental data. The experimental data were correlated with the Apelblat equation. At the same temperature, the order of increasing solubility is ethyl acetate > n-hexane > 1-butanol > 1-propanol > 2-propanol > ethanol.

Keywords

Coenzyme Q10 Solubility COSMO-RS Gravimetric method Apelblat equation 

Notes

Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No.20836005, 21003077 and 21176184) and the Open Project of Key Laboratory Advanced Energy Materials Chemistry (Nankai University) (KLAEMC-OP201201). The ADF program (trial version) was provided by Beijing Hongcam Company.

References

  1. 1.
    Lenaz, G., Fato, R., Formiggini, G., Genova, M.L.: The role of coenzyme Q in mitochondrial electron transport. Mitochondrion 7(Supplement), S8–S33 (2007)CrossRefGoogle Scholar
  2. 2.
    Crane, F.L.: Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr. 20, 591–598 (2001)Google Scholar
  3. 3.
    Zhang, J., Hu, J.W., Wang, J.L., Chen, L.Z.: Solubility of 1,3,3-trinitroazetidine in ethanol+water systems from (293.15 to 323.15 K). J. Solution Chem. 40, 703–708 (2011)CrossRefGoogle Scholar
  4. 4.
    Jing, D.D., Wang, J.K., Wang, Y.L.: Solubility of penicillin sulfoxide in different solvents. J. Chem. Eng. Data 55, 508–509 (2010)CrossRefGoogle Scholar
  5. 5.
    Klamt, A.: COSMO-RS, From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design. Elsevier B.V, Amsterdam (2005)Google Scholar
  6. 6.
    Schröder, B., Santos, L.M.N.B.F., Marrucho, I.M., Coutinho, J.A.P.: Prediction of aqueous solubilities of solid carboxylic acids with COSMO-RS. Fluid Phase Equil. 289, 140–147 (2010)CrossRefGoogle Scholar
  7. 7.
    ADF2010, Trial version, Scientific Computing & Modelling NV, Theoretical Chemistry. Vrije Universiteit, Amsterdam, Netherlands (2011)Google Scholar
  8. 8.
    te Velde, G., Bickelhaupt, F.M., van Gisbergen, S.J.A., Guerra, C.F., Baerends, E.J., Snijders, J.G., Ziegler, T.: Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001)CrossRefGoogle Scholar
  9. 9.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian03, Re Vision C.01. Gaussian, Inc., Pittsburgh (2004)Google Scholar
  10. 10.
    Schäfer, A., Huber, C., Ahlrichs, R.: Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994)CrossRefGoogle Scholar
  11. 11.
    Pye, C.C., Ziegler, T., van Lenthe, E., Louwen, J.N.: An implementation of the conductor-like screeningmodel of solvation within the Amsterdam density functional package. Part II. COSMO for real solvents. Can. J. Chem. 87, 790–797 (2009)CrossRefGoogle Scholar
  12. 12.
    Zhou, H.F., Yue, Y., Liu, G.L., Li, Y., Zhang, J., Yan, Z.M., Duan, M.X.: Characterisation and skin distribution of lecithin-based coenzyme Q10-loaded lipid nanocapsules. Nanoscale Res. Lett. 5, 1561–1569 (2010)CrossRefGoogle Scholar
  13. 13.
    Cui, P.L., Yin, Q.X., Gong, J.B.: Solubility of candesartan cilexetil in different solvents at various temperatures. J. Chem. Eng. Data 56, 658–660 (2011)CrossRefGoogle Scholar
  14. 14.
    Zhang, X.W., Yin, Q.X., Gong, J.B., Liu, Z.K.: Solubility of 5-amino-N,N’-bis(2,3-dihydroxypropyl)-2,4,6-triiodobenzene-1,3-dicarboxamide in ethanol plus water mixtures. J. Chem. Eng. Data 55, 2355–2357 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yin Zhao
    • 1
  • Yan-Hong Sun
    • 1
  • Zhi-Yong Li
    • 1
  • Chuang Xie
    • 1
  • Ying Bao
    • 1
  • Zhi-Jian Chen
    • 1
  • Jun-Bo Gong
    • 1
  • Qiu-Xiang Yin
    • 1
  • Wei Chen
    • 1
  • Cui Zhang
    • 2
  1. 1.Department of Chemical EngineeringSchool of Chemical Engineering and Technology, Tianjin UniversityTianjinChina
  2. 2.Institute of New Catalytic Materials Science, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai UniversityTianjinChina

Personalised recommendations