Journal of Solution Chemistry

, Volume 42, Issue 4, pp 849–865 | Cite as

Spectroscopic Investigation on Sonocatalytic Damage of BSA Molecules by FeIII Complexes with Binary Organic Acid Ligands Under Ultrasonic Irradiation

  • Mingming Zou
  • Ying Li
  • Jun Wang
  • Qi Wang
  • Yumei Kong
  • Jingqun Gao
  • Ping Fan


The interaction between bovine serum albumin (BSA) and FeIII complexes with three binary organic acid (biorga) ligands, [FeIII(oxa)(H2O)4]+ (oxa = oxalic acid), [FeIII(pra)(H2O)4]+ (pra = propanedioic acid) and [FeIII(sua)(H2O)4]+ (sua = succinic acid), as well as the sonocatalytic damage of BSA in the presence of these three FeIII–biorga complexes under ultrasonic irradiation, were studied by UV–vis and fluorescence spectra. The experimental results show that the fluorescence quenching process of BSA caused by three FeIII–biorga complexes are all static quenching and the corresponding quenching rate constants (K q), equilibrium constants (K A) and the binding site numbers (n) were calculated. The results reveal that, under ultrasonic irradiation, the BSA molecules were obviously damaged by these FeIII–biorga complexes. In addition, the effects of several factors on the damage of BSA molecules were examined. The experimental results demonstrate that the damage degree of BSA increased with an increase of ultrasonic irradiation time, FeIII–biorga complex concentration, and ionic strength. In comparison, [FeIII(pra)(H2O)4]+ exhibited higher sonocatalytic activity than [FeIII(oxa)(H2O)4]+ and [FeIII(sua)(H2O)4]+. Finally, the extent of generation of \( \cdot {\text{O}}_{2}^{ - } \)and ·OH during sonocatalytic processes was estimated. Perhaps, the results will be significant for promoting sonodynamic treatment (SDT) of tumors at the molecular level.


Sonocatalytic damage Bovine serum albumin (BSA) FeIII complex Binary organic acid 



The authors greatly acknowledge the Liaoning Provincial Department of Education Innovation Team Projects (LT2012001), Shenyang Science and Technology Plan Projects (F12-277-1-15), and Liaoning University “211” Engineering Construction Project for financial support. The authors also thank our colleagues and other students for their participation in this work.


  1. 1.
    Wang, X.B., Liu, Q.H., Wang, P., Tang, W., Hao, Q.: Study of cell killing effect on S180 by ultrasound activating protoporphyrin IX. Ultrasonics 48, 135–140 (2008)CrossRefGoogle Scholar
  2. 2.
    Yu, T., Wang, Z., Mason, T.J.: A review of research into the uses of low level ultrasound in cancer therapy. Ultrason. Sonochem. 11, 95–103 (2004)CrossRefGoogle Scholar
  3. 3.
    Miyoshi, N., Igarashi, T., Riesz, P.: Evidence against singlet oxygen formation by sonolysis of aqueous oxygen-saturated solutions of Hematoporphyrin and Rose Bengal: The mechanism of sonodynamic therapy. Ultrason. Sonochem. 7, 121–124 (2000)CrossRefGoogle Scholar
  4. 4.
    Yumita, N., Umemura, S., Nishigaki, R.: Ultrasonically induced cell damage enhanced by photofrin II: Mechanism of sonodynamic activation. In vivo 14, 425–429 (2000)Google Scholar
  5. 5.
    Yumita, N., Nishigaki, R., Sakata, I., Nakajima, S., Umemura, S.: Sonodynamically induced antitumor effect of 4-formyloximeetylidene-3-hydroxyl-2-vinyl-deuterio-porphynyl (IX)-6,7-diaspartic acid (ATX-S10). Jpn. J. Cancer Res. 91, 255–260 (2000)CrossRefGoogle Scholar
  6. 6.
    Liu, Q.H., Sun, S.H., Xiao, Y.P., Qi, H., Shang, Z.Y., Zhang, J.P., Zhang, J.X., Ren, Y.H., Li, M., Li, Q.: Study of cell killing on S180 by different intensity ultrasound activate hematoporphyrin derivatives. Sci. China (Ser. C) 46, 253–262 (2003)Google Scholar
  7. 7.
    Liu, Q.H., Liu, S.Y., Qi, H., Wang, P., Tang, W., Zhang, K., Dai, L., Shi, X.C.: Preliminary study on the mechanism of apoptosis in Ehrlich ascites tumor cells by sonochemical-activated hematoporphyri. Acta Zool. Sin. 51, 1073–1079 (2005)Google Scholar
  8. 8.
    Uchida, T., Tachibana, K., Hisano, S., Morioka, E.: Elimination of adult T cell leukemia cells by ultrasound in the presence of porfimer sodium. Anticancer Drug 8, 329–335 (1997)CrossRefGoogle Scholar
  9. 9.
    Worthington, A.E., Thompson, J., Rauth, A.M., Hunt, J.W.: Mechanism of ultrasound enhanced porphyrin cytotoxicity. Part I: A search for free radical effects. Ultrasound Med. Biol. 23, 1095–1105 (1997)CrossRefGoogle Scholar
  10. 10.
    Yumita, N., Sasaki, K., Umemura, S., Yukawa, A., Nishigaki, R.: Sonodynamically induced antitumor effect of gallium–porphyrin complex by focused ultrasound on experimental kidney tumor. Cancer Lett. 112, 79–86 (1997)CrossRefGoogle Scholar
  11. 11.
    Miyoshi, N., Misik, V., Riesz, P.: Sonodynamic toxicity of gallium–porphyrin analogue ATX-70 in human leukemia. Cells. Radiat. Res. 148, 43–47 (1997)CrossRefGoogle Scholar
  12. 12.
    Sasaki, K., Yumita, Y., Nishigaki, R., Umemura, S.: Antitumor effect sonodynamically induced by focused ultrasound in combination with Ga–porphyrin complex. Jpn. J. Cancer Res. 89, 452–456 (1998)CrossRefGoogle Scholar
  13. 13.
    Tachibana, K., Uchida, T., Ogawa, K., Yamashita, N., Tamura, K.: Induction of cell-membrane porosity by ultrasound. Lancet 353, 1409 (1999)CrossRefGoogle Scholar
  14. 14.
    Sakusaba, N., Okada, K., Sato, K., Kamada, S., Yoshida, Y., Suzuki, T.: Sonodynamic antitumor effect of ultrasound in the presence of nonsteroidal anti-inflammatory drugs. Jpn. J. Cancer Res. 90, 1146–1151 (1999)CrossRefGoogle Scholar
  15. 15.
    Umemura, S., Kawabata, K., Sasaki, K.: In vitro and in vivo enhancement of sonodynamically active cavitation by second-harmonic superimposition. J. Acoust. Soc. Am. 101, 569–577 (1997)CrossRefGoogle Scholar
  16. 16.
    Kosa, T., Maruyama, T., Otagiri, M.: Species differences of serum albumins: I. Drug binding sites. Pharm. Res. 14, 1607–1612 (1997)CrossRefGoogle Scholar
  17. 17.
    Banerjee, M., Pal, U., Subudhhi, A., Chakrabarti, A., Basu, S.: Interaction of Merocyanine 540 with serum albumins: Photophysical and binding studies. J. Photochem. Photobiol. B 108, 23–33 (2012)CrossRefGoogle Scholar
  18. 18.
    Jun, J.Y., Nguyen, H.H., Paik, S.Y.R., Chun, H.S., Kang, B.C., Ko, S.: Preparation of size-controlled bovine serum albumin (BSA) nanoparticles by a modified desolvation method. Food Chem. 127, 1892–1898 (2011)CrossRefGoogle Scholar
  19. 19.
    Sakai-Kato, K., Kato, M., Nakakuki, H., Toyóoka, T.: Investigation of structure and enantioselectivity of BSA-encapsulated sol–gel columns prepared for capillary electrochromatography. J. Pharm. Biomed. Anal. 31, 299–309 (2003)CrossRefGoogle Scholar
  20. 20.
    Helén, L., Sven, O., Jos, B.: Structure, stability, and orientation of BSA adsorbed to silica. J. Colloid Interface Sci. 289, 26–35 (2005)CrossRefGoogle Scholar
  21. 21.
    Sugio, S., Kashima, A., Mochizuki, S., Noda, M., Kobayashi, K.: Crystal structure of human serum albumin at 2.5 Å resolution. Prot. Eng. 12, 439–446 (1999)Google Scholar
  22. 22.
    Tsujino, I., Anderson, G.S., Sieber, F.: Post-irradiation hyperthermia selectively potentiates the Merocyanine 540-sensitized photoinactivation of small cell lung cancer cells. Photochem. Photobiol. 73, 191–198 (2001)CrossRefGoogle Scholar
  23. 23.
    Gray, H.B., Winkler, J.R.: Electron transfer in proteins. Annu. Rev. Biochem. 65, 537–561 (1996)CrossRefGoogle Scholar
  24. 24.
    Erkkila, K.E., Odom, D.T., Barton, J.K.: Recognition and reaction of metallointercalators with DNA. Chem. Rev. 99, 2777–2796 (1999)CrossRefGoogle Scholar
  25. 25.
    Cohen, S.M., Lippard, S.J.: Cisplatin: from DNA damage to cancer chemotherapy. Prog. Prog. Nucleic Acid Res. Molec. Biol. 67, 93–130 (2001)CrossRefGoogle Scholar
  26. 26.
    Beilstein, A.E., Tierney, M.T., Grinstaff, M.W.: Site-specifically labeled metallo–oligodeoxynucleotides. Comments Inorg. Chem. 22, 105–127 (2000)CrossRefGoogle Scholar
  27. 27.
    Terpetschnig, E., Szmacinski, H., Lakowicz, J.R.: Long-lifetime metal–ligand complexes as probes in biophysics and clinical chemistry. Methods Enzymol. 278, 295–321 (1997)CrossRefGoogle Scholar
  28. 28.
    Ling, Y.Q., Nie, H.L., White, C.B., Williams, G.R., Zhu, L.M.: Metal chelate affinity precipitation: Purification of BSA using poly (N-vinylcaprolactam-co-methacrylic acid) copolymers. Colloids Surf. B: Biointerfaces 94, 281–287 (2012)Google Scholar
  29. 29.
    Ravindran, A., Singh, A., Raichur, A.M., Chandrasekaran, N., Mukherjee, A.: Studies on interaction of colloidal Ag nanoparticles with bovine serum albumin (BSA). Colloids Surf. B: Biointerfaces 76, 32–37 (2010)Google Scholar
  30. 30.
    Mandal, H.K., Kundu, A., Balti, S., Mahapatra, A.: Kinetic investigation on the oxidation of tris(1,10-phenanthroline)iron(II) by oxone: the effect of BSA–SDS interaction. J. Colloid Interface Sci. 378, 110–117 (2012)CrossRefGoogle Scholar
  31. 31.
    Silva, M.R.A., Trovó, A.G., Nogueira, R.F.P.: Degradation of the herbicide tebuthiuron using solar photo-Fenton process and ferric citrate complex at circumneutral pH. J. Photochem. Photobiol. A: Chem. 191, 187–192 (2007)CrossRefGoogle Scholar
  32. 32.
    Gautier-Luneau, I., Merle, C., Phanon, D., Lebrun, C., Biaso, F., Serratrice, G., Pierre, J.L.: New trends in the chemistry of iron(III) citrate complexes: Correlations between X-ray structures and solution species probed by electrospray mass spectrometry and kinetics of iron uptake from citrate by iron chelators. Chem. Eur. J. 11, 2207–2219 (2005)CrossRefGoogle Scholar
  33. 33.
    Beltran, F.J., Rivas, F.J., Montero-de-Espinosa, R.: Iron type catalysts for the ozonation of oxalic acid in water. Water Res. 39, 3553–3564 (2005)CrossRefGoogle Scholar
  34. 34.
    Liu, C.S., Li, F.B., Li, X.M., Zhang, G., Kuang, Y.Q.: The effect of iron oxides and oxalate on the photodegradation of 2-mercaptobenzothiazole. J. Mol. Catal. A: Chem. 252, 40–48 (2006)CrossRefGoogle Scholar
  35. 35.
    Salvado, V., Ribas, X., Zelano, V., Ostacoli, G., Valiente, M.: The chemistry of iron in biosystems—III. Complex formation between FeIII and malonic acid in aqueous solutions. Polyhedron 8, 813–818 (1989)CrossRefGoogle Scholar
  36. 36.
    Wang, C.X., Yan, F.F., Zhang, Y.X., Ye, L.: Spectroscopic investigation of the interaction between rifabutin and bovine serum albumin. J. Photochem. Photobiol. A 192, 23–28 (2007)CrossRefGoogle Scholar
  37. 37.
    Hu, Y.J., Liu, Y., Zhao, R.M., Dong, J.X., Qu, S.S.: Spectroscopic studies on the interaction between methylene blue and bovine serum albumin. J. Photochem. Photobiol. A 179, 324–329 (2006)CrossRefGoogle Scholar
  38. 38.
    Wang, J., Sun, W., Zhang, Z.H., Zhang, X.D., Li, R.H., Ma, T., Zhang, P., Li, Y.: Sonocatalytic degradation of methyl parathion in the presence of micron-sized and nano-sized rutile titanium dioxide catalysts and comparison of their sonocatalytic abilities. J. Mol. Catal. A: Chem. 272, 84–90 (2007)CrossRefGoogle Scholar
  39. 39.
    Wang, J., Jiang, Y.F., Zhang, Z.H., Zhang, X.D., Ma, T., Zhang, G., Zhao, G., Zhang, P., Li, Y.: Investigation on the sonocatalytic degradation of acid red B in the presence of nanometer TiO2 catalysts and comparison of catalytic activities of anatase and rutile TiO2 powders. Ultrason. Sonochem. 14, 545–551 (2007)CrossRefGoogle Scholar
  40. 40.
    Wang, J., Sun, W., Zhang, Z.H., Jiang, Z., Wang, X.F., Xu, R., Li, R.H., Zhang, X.D.: Preparation of Fe-doped mixed crystal TiO2 catalyst and investigation of its sonocatalytic activity during degradation of azo fuchsine under ultrasonic irradiation. J. Colloid Interface Sci. 320, 202–209 (2008)CrossRefGoogle Scholar
  41. 41.
    Huang, Y.H., Tsai, S.T., Huang, Y.F., Chen, C.Y.: Degradation of commercial azo dye reactive Black B in photo/ferrioxalate system. J. Hazard. Mater. 140, 382–388 (2007)CrossRefGoogle Scholar
  42. 42.
    Seymour, J.D., Gupta, R.B.: Oxidation of aqueous pollutants using ultrasound: Salt-induced enhancement. Ind. Eng. Chem. Res. 36, 3453–3457 (1997)CrossRefGoogle Scholar
  43. 43.
    Lloyd, J.B.F.: Multicomponent analysis by synchronous luminescence spectrometry. Nature 231, 64–65 (1971)Google Scholar
  44. 44.
    Wang, J., Guo, Y.W., Gao, J.Q., Jin, X.D., Wang, Z.Q., Wang, B.X., Li, K., Li, Y.: Detection and comparison of reactive oxygen species (ROS) generated by chlorophyllin metal (Fe, Mg and Cu) complexes under ultrasonic and visible-light irradiation. Ultrason. Sonochem. 18, 1028–1034 (2011)CrossRefGoogle Scholar
  45. 45.
    Guo, Y.W., Cheng, C.P., Wang, J., Jin, X.D., Liu, B., Wang, Z.Q., Gao, J.Q., Kang, P.L.: Oxidation–extraction spectrometry of reactive oxygen species (ROS) generated by chlorophyllin magnesium (Chl-Mg) under ultrasonic irradiation. Spectrochim. Acta A 79, 1099–1104 (2011)CrossRefGoogle Scholar
  46. 46.
    Wang, J., Guo, Y.W., Liu, B., Jin, X.D., Liu, L.J., Xu, R., Kong, Y.M., Wang, B.X.: Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes. Ultrason. Sonochem. 18, 177–183 (2011)CrossRefGoogle Scholar
  47. 47.
    Davies, M.J., Fu, S., Dean, R.T.: Protein hydroperoxides can give rise to reactive free radicals. Biochem. J. 305, 643–649 (1995)Google Scholar
  48. 48.
    Hawkins, C.L., Davies, M.J.: Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta 1504, 196–219 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mingming Zou
    • 1
  • Ying Li
    • 1
  • Jun Wang
    • 1
  • Qi Wang
    • 1
  • Yumei Kong
    • 1
  • Jingqun Gao
    • 1
  • Ping Fan
    • 1
  1. 1.College of ChemistryLiaoning UniversityShenyangPeople’s Republic of China

Personalised recommendations