Journal of Solution Chemistry

, Volume 42, Issue 2, pp 272–281 | Cite as

Solubility of 1-(3-Bromopropoxy)-4-Chlorobenzene in Aqueous Ethanol Mixtures From (273.15 to 303.15) K

  • Xin-Min Jiang
  • Yong-Hong Hu
  • Wen-Ge Yang
  • Zi-Yu Lei
  • Rong-Rong Tang
  • Fei Shen


1-(3-Bromopropoxy)-4-chlorobenzene is an important intermediate for the manufacture of omoconazole nitrate. The solubilities of 1-(3-bromopropoxy)-4-chlorobenzene in aqueous ethanol solutions were measured within the temperature range of (273.15–303.15) K using a laser monitoring system. For the temperature range investigated, the solubilities of 1-(3-bromopropoxy)-4-chlorobenzene in the aqueous ethanol mixtures increase with increasing temperature. The solubility data were regressed by the Buchowski–Ksiazaczak λh and the modified Apelblat models. The modified Apelblat equation and the Buchowski–Ksiazaczak λh equation provided accurate mathematical representations of the experimental results. The calculated solubilities showed good agreement with the experimental data. The root-mean-square deviations of the modified Apelblat model were lower than those of the Buchowski–Ksiazaczak λh model. This study provided valuable data for the purification of 1-(3-bromopropoxy)-4-chlorobenzene by crystallization.


1-(3-Bromopropoxy)-4-chlorobenzene Solubility Correlation Modified Apelblat equation 

Nomenclature and Units

\( x \)

Mole fraction solubility

\( x_{i}^{\text{calc}} \)

Calculated value of the solubility

\( x_{i}^{\exp } \)

Experimental value of the solubility

\( T \)

Absolute temperature

\( \omega \)

Volume fraction of ethanol in the solvent mixture

\( T_{\text{m}} \)

Melting point

A, B, C

Empirical constants in Eq. 4

λ, h

Empirical constants in Eq. 8

\( \gamma_{x} \)

Activity coefficient on a mole fraction basis

\( \Updelta_{\text{fus}} H \)

Enthalpy of fusion

\( \Updelta C_{p}^{{}} \)

Heat capacity difference between the solid and the liquid

\( T_{t} \)

Triple point temperature


Root-mean-square deviation


Gas constant

C1, C2,C3

Molar concentration of ethanol, 1-(3-bromopropoxy)-4-chlorobenzene and water, respectively, in saturated solutions



This research work was financially supported by the Fundamental University Science Project of Jiangsu Province in China (No. 12KJA180002). This Research work was also supported by the Grant from the Natural Science Foundation of China (NSFC) (No. 31171644). We thank the editors and the anonymous reviewers.


  1. 1.
    Zirngibl, L., Fischer, J., Jahn, U., Thiele, K.: Structure–activity relationships of 2-(1H-imidazol-1-yl)vinyl ethers. Ann. N. Y. Acad. Sci. 544, 63–73 (1988)CrossRefGoogle Scholar
  2. 2.
    Itoyama, T., Aoki, Y., Hiratani, T., Uchida, K., Yamaguchi, H.: Various factors influencing in vitro antifungal activities of omoconazole nitrate (OMZ), a new imidazole antimycotic. Jpn. J. Antibiot. 47, 40–49 (1994)Google Scholar
  3. 3.
    Itoyama, T., Aoki, Y., Hiratani, T., Uchida, K., Yamaguchi, H.: In vitro antifungal activity of omoconazole nitrate, a new imidazole antimycotic. Jpn. J. Antibiot. 46, 773–780 (1993)Google Scholar
  4. 4.
    Itoyama, T., Uchida, K., Yamaguchi, H.: Therapeutic effects of omoconazole nitrate on guinea-pigs experimentally infected with Trichophyton mentagrophytes. J. Antimicrob. Chemother. 39, 825–827 (1997)CrossRefGoogle Scholar
  5. 5.
    Uchida, K., Itoyama, T., Yamaguchi, H.: In vitro antifungal activity of omoconazole nitrate, a novel imidazone antimycotic drug, against clinical isolates from patients with cutaneous mycosis. Jpn. J. Antibiot. 49, 818–823 (1996)Google Scholar
  6. 6.
    Itoyama, T., Uchida, K., Yamaguchi, H., Fujita, S.: Therapeutic effects of omoconazole nitrate on experimental Tinea pedis, an intractable dermatophytosis, in guinea-pigs. J. Antimicrob. Chemother. 40, 441–444 (1997)CrossRefGoogle Scholar
  7. 7.
    Nishiyama, Y., Itoyama, T., Yamaguchi, H.: Ultrastructural alterations of Candida albicans induced by a new imidazole antimycotic omoconazole nitrate. Microbiol. Immunol. 41, 395–402 (1997)Google Scholar
  8. 8.
    Harvey, A.J., Baell, J.B., Wulff, H.: Novel potassium channel blockers and uses thereof. Patent WO2006096911, 2006Google Scholar
  9. 9.
    Lazewska, D., Kuder, K., Ligneau, X., Schwartz, J.C., Schunack, W., Stark, H., Kiec-Kononowicz, K.: Piperidine variations in search for non-imidazole histamine H(3) receptor ligands. Bioorg. Med. Chem. 16, 8729–8736 (2008)CrossRefGoogle Scholar
  10. 10.
    Ashwell, M., Tandon, M., Lapierre, J.-M., Ali, S., Vensel, D., Li, C.J.: Novel lapachone compounds and methods of use thereof. Patent WO2007139569, 2007Google Scholar
  11. 11.
    Cuthbertson, J., Ibanez, M., Rijnbrand, A., Jackson, J., Mittapalli, K., Zhao, F., Flossie, W.-S.: Hepatitis C virus entry inhibitors. Patent WO2008021745, 2008Google Scholar
  12. 12.
    Yi, Y., Hatziavramidis, D., Myerson, A.S., Waldo, M., Beylin, V.G., Mustakis, J.: Development of a small-scale automated solubility measurement apparatus. Ind. Eng. Chem. Res. 44, 5427–5433 (2005)CrossRefGoogle Scholar
  13. 13.
    Mullin, J.-W.: Crystallization, 3rd edn. Butterworth–Heinemann, Oxford, UK (1997)Google Scholar
  14. 14.
    Yang, W.-G., Yao, J.-F., Zhao, X.-L., Hu, Y.-H.: 1-(3-Bromopropoxy)-4-chlorobenzene. Acta Crystallogr. E64, o2422 (2008)Google Scholar
  15. 15.
    Hu, Y.-H., Chen, X., Yang, W.-G., Guan, J.: Measurement and correlation of the solubility of urea l-tartaric acid in aqueous ethanol solution. Thermochim. Acta 484, 38–40 (2009)CrossRefGoogle Scholar
  16. 16.
    Chen, Z.-G., Yang, W.-G., Hu, Y.-H., Lei, Z.-Y., Wang, Y.-H., Wan, W.-Q.: Measurement and correlation for the solubility of dimethyl 1,4-cyclohexanedione-2,5-dicarboxylate in different dolvents at temperatures from (278.15 to 323.15) K. J. Chem. Eng. Data 56, 2726–2729 (2011)CrossRefGoogle Scholar
  17. 17.
    Ullah, I., Baloch, M.-K., Durrani, G.-F.: Solubility of nonsteroidal anti-inflammatory drugs (NSAIDs) in aqueous solutions of non-ionic surfactants. J. Solution Chem. 40, 1341–1348 (2011)CrossRefGoogle Scholar
  18. 18.
    Zhang, J., Hu, J.-W., Wang, J.-L., Chen, L.-Z.: Solubility of 1,3,3-trinitroazetidine in ethanol + water systems from (293.15 K to 323.15 K). J. Solution Chem. 40, 703–708 (2011)CrossRefGoogle Scholar
  19. 19.
    Li, D.-Q., Liu, D.-Z., Wang, F.-A.: Solubility of 4-methylbenzoic acid between 288 and 370 K. J. Chem. Eng. Data 46, 234–236 (2001)CrossRefGoogle Scholar
  20. 20.
    Zi, J.-Q., Peng, B., Yan, W.-D.: Solubilities of rutin in eight solvents at T = 283.15, 298.15, 313.15, 323.15, and 333.15 K. Fluid Phase Equilib. 261, 111–114 (2007)CrossRefGoogle Scholar
  21. 21.
    Prausnitz, J.-M., Lichtenthaler, R.-N., Azevedo, E.-G.: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn. Prentice Hall PTR, Upper Saddle River (1998)Google Scholar
  22. 22.
    Dong, H., Fu, R–.R., Yan, W.-D., Zhu, M.: Solubility and density of the disodium salt hemiheptahydrate of ceftriaxone in (acetone + water) at T = (298.15, 308.15, and 318.15) K. J. Chem. Thermodyn. 36, 155–159 (2004)CrossRefGoogle Scholar
  23. 23.
    Apelblat, A., Manzurola, E.: Solubilities of l-aspartic, dl-aspartic, dl-glutamic, p-hydroxybenzoic, o-anisic, p-anisic, and itaconic acids in water from T = 278 K to T = 345 K. J. Chem. Thermodyn. 29, 1527–1533 (1997)CrossRefGoogle Scholar
  24. 24.
    Apelblat, A., Manzurola, E.: Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium-dl-aspartate in water from T = (278–348) K. J. Chem. Thermodyn. 31, 85–91 (1999)CrossRefGoogle Scholar
  25. 25.
    Manzurola, E., Apelblat, A.: Solubilities of l-glutamic acid, 3-nitrobenzoic acid, p-toluic acid, calcium-l-lactate, calcium gluconate, magnesium dl-aspartate, and magnesium-l-lactate in water. J. Chem. Thermodyn. 34, 1127–1136 (2002)CrossRefGoogle Scholar
  26. 26.
    Buchowski, H., Ksiazczak, A., Pietrzyk, S.: Solvent activity along a saturation line and solubility of hydrogen-bonding solids. J. Phys. Chem. 84, 975–979 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Xin-Min Jiang
    • 1
  • Yong-Hong Hu
    • 1
    • 2
  • Wen-Ge Yang
    • 1
  • Zi-Yu Lei
    • 1
  • Rong-Rong Tang
    • 1
    • 2
  • Fei Shen
    • 2
  1. 1.College of Biotechnology and Pharmaceutical EngineeringNanjing University of TechnologyNanjingChina
  2. 2.Jiangsu Engineering Technology Research Center of Polypeptide PharmaceuticalNanjingChina

Personalised recommendations