Advertisement

Journal of Solution Chemistry

, Volume 42, Issue 11, pp 2071–2086 | Cite as

Prediction of the Surface Tension, Surface Concentration and the Relative Gibbs Adsorption Isotherm of Non-ideal Binary Liquid Mixtures

  • A. Bagheri
  • A. A. Rafati
  • A. Adeli Tajani
  • A. R. Afraz Borujeni
  • A. Hajian
Article

Abstract

Surface properties of binary mixtures of 1,2-ethanediol, 1,2-propanediol and 1,4-butanediol with acetonitrile have been measured by the surface tension method at T = 298.15 K and atmospheric pressure. The surface tension has been predicted based on the Suarez method. This method combines a model for the description of surface tension of liquid mixtures by using the UNIFAC group contribution method for calculation of activity coefficients. Also, the results have been discussed in terms of surface concentration and lyophobicity using the extended Langmuir isotherm. The results provide information on the molecular interactions between the unlike molecules that exist at the surface and the bulk phase. Finally, experimental values of the surface tension have been correlated by the Redlich–Kister and Wang–Chen polynomial equations over the whole mole fraction range.

Keywords

Surface tension Prediction Correlation Surface adsorption UNIFAC 

References

  1. 1.
    Bezerram, E.S., Santos, J.M.T., Paredes, M.L.L.: A new predictive model for liquid/air surface tension of mixtures: hydrocarbon mixtures. Fluid Phase Equilib. 288, 55–62 (2010)CrossRefGoogle Scholar
  2. 2.
    Villares, A., Giner, B., Artigas, H., Lafuente, C., Royo, F.M.: Study of the surface tensions of cyclohexane or methylcyclohexane with some cyclic ethers. J. Solution Chem. 34, 185–198 (2005)CrossRefGoogle Scholar
  3. 3.
    Pandey, J.D., Srivastava, T.: Surface tension: a theoretical study of multicomponent solutions. J. Mol. Liq. 155, 51–56 (2010)CrossRefGoogle Scholar
  4. 4.
    Maximino, R.B.: Surface tension and density of binary mixtures of monoalcohols, water and acetonitrile: equation of correlation of the surface tension. Phys. Chem. Liq. 47, 475–486 (2009)CrossRefGoogle Scholar
  5. 5.
    Suarez, J.T., Torres-Marchal, C., Rasmussen, P.: Prediction of surface tensions of nonelectrolyte solutions. Chem. Eng. Sci. 44, 782–785 (1989)CrossRefGoogle Scholar
  6. 6.
    Butler, J.A.V.: The thermodynamics of the surfaces of solutions. Proc. R. Soc. Lond. 135, 348–375 (1932)CrossRefGoogle Scholar
  7. 7.
    Li, C., Wang, W., Zihao, W.: A surface tension model for liquid mixtures based on the Wilson equation. Fluid Phase Equilib. 175, 185–196 (2000)CrossRefGoogle Scholar
  8. 8.
    Bahramian, A., Danesh, A.: Prediction of liquid–liquid interfacial tension in multi-component systems. Fluid Phase Equilib. 221, 197–205 (2004)CrossRefGoogle Scholar
  9. 9.
    Kalies, G., Brauer, P., Schmidt, A., Messow, U.: Calculation and prediction of adsorption excesses on the ternary liquid mixture/air interface from surface tension measurements. J. Colloid Interface Sci. 247, 1–11 (2002)CrossRefGoogle Scholar
  10. 10.
    Queimada, A.J., Rolo, L.I., Caco, A.I., Marrucho, I.M., Stenby, E.H., Coutinho, J.A.P.: Prediction of viscosities and surface tensions of fuels using a new corresponding states model. Fuel 85, 874–877 (2006)CrossRefGoogle Scholar
  11. 11.
    Zuo, Y.X., Stenby, E.H.: Corresponding-states and parachor models for the calculation of interfacial tensions. Can. J. Chem. Eng. 75, 1130–1137 (1997)CrossRefGoogle Scholar
  12. 12.
    Mejia, A., Segura, H., Vega, L.F., Wisniak, J.: Simultaneous prediction of interfacial tension and phase equilibria in binary mixtures: an approach based on cubic equations of state with improved mixing rules. Fluid Phase Equilib. 227, 225–238 (2005)CrossRefGoogle Scholar
  13. 13.
    Toxvaerd, S.: Surface structure of a square-well. Fluid J. Chem. Phys. 57, 4092–4098 (1972)CrossRefGoogle Scholar
  14. 14.
    Tjahjono, M., Garland, M.: A new modified parachor model for predicting surface compositions of binary liquid mixtures. On the importance of surface volume representation. J. Colloid Interface Sci. 345, 528–537 (2010)CrossRefGoogle Scholar
  15. 15.
    Sprow, F.B., Prausnitz, J.M.: Surface thermodynamics of liquid mixtures. Can. J. Chem. Eng. 45, 25–28 (1967)CrossRefGoogle Scholar
  16. 16.
    Nath, S.J.: Surface tension of nonideal binary liquid mixtures as a function of composition. J. Colloid Interface Sci. 209, 116–122 (1999)CrossRefGoogle Scholar
  17. 17.
    Rafati, A.A., Ghasemian, E.: Experimental and theoretical study of surface tension of binary mixtures of (n-alkyl acetates + heptane, benzene, and toluene). J. Chem. Thermodyn. 41, 386–391 (2009)CrossRefGoogle Scholar
  18. 18.
    Giner, B., Cea, P., Lopez, M.C., Royo, F.M., Lafuente, C.: Surface tensions for isomeric chlorobutanes with isomeric butanols. J. Colloid Interface Sci. 275, 284–289 (2004)CrossRefGoogle Scholar
  19. 19.
    Sprow, F.B., Prausnitz, J.: Surface tensions of simple liquid mixtures. Trans. Faraday Soc. 62, 1105–1111 (1966)CrossRefGoogle Scholar
  20. 20.
    Tester, J.W., Modell, M.: Thermodynamics and Its Applications, 3rd edn. Prentice Hall, New York (1997)Google Scholar
  21. 21.
    Gmehling, J., Rasmussen, P., Fredenslund, A.: Vapor–liquid equilibriums by UNIFAC group contribution. Revision and extension. 2. Ind. Eng. Chem. Process Des. Dev. 21, 118–127 (1982)CrossRefGoogle Scholar
  22. 22.
    Larsen, B.L., Rasmussen, P., Fredenslund, A.: A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing. Ind. Eng. Chem. Res. 26, 2274–2286 (1987)CrossRefGoogle Scholar
  23. 23.
    Chattoraj, D.K., Birdi, K.S.: Adsorption and the Gibbs Surface Excess. Plenum Press, New York (1984)CrossRefGoogle Scholar
  24. 24.
    Gmehling, J., Li, J., Schiler, M.: A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind. Eng. Chem. Res. 32, 178–193 (1993)CrossRefGoogle Scholar
  25. 25.
    Rafati, A.A., Ghasemian, E.: Study of surface tension and surface properties of binary alcohol/n-alkyl acetate mixtures. J. Colloid Interface Sci. 328, 385–390 (2008)CrossRefGoogle Scholar
  26. 26.
    Pineiro, A., Brocos, P., Amigo, A., Fadrique, J.G., Lemus, M.G.: Extended Langmuir isotherm for binary liquid mixtures. Langmuir 17, 4261–4266 (2001)CrossRefGoogle Scholar
  27. 27.
    Redlich, O.J., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)CrossRefGoogle Scholar
  28. 28.
    Wohlfarth, C., Wohlfarth, B.: Surface Tension of Pure Liquids and Binary Liquid Mixtures, vol. 16. Springer, New York (1997)Google Scholar
  29. 29.
    Kinart, B., Kinart, C.M., Kolasinski, W.J., Cwiklinska, A.: Physicochemical properties of acetonitrile–butan-1-ol and acetonitrile–butan-2-ol mixtures. Phys. Chem. Liq. 38, 583–597 (2000)CrossRefGoogle Scholar
  30. 30.
    Iloukhani, H., Almasi, M.: Densities, viscosities, excess molar volumes, and refractive indices of acetonitrile and 2-alkanols binary mixtures at different temperatures: experimental results and application of the Prigogine–Flory–Patterson theory. Thermochim. Acta 495, 139–148 (2009)CrossRefGoogle Scholar
  31. 31.
    Cocchi, M., Marchetti, A., Pigani, L., Sanna, G., Tassi, L., Ulrici, A., Vaccari, G., Zanardi, C.: Density and volumetric properties of ethane-1,2-diol + di-ethylen-glycol mixtures at different temperatures. Fluid Phase Equilib. 172, 93–104 (2000)CrossRefGoogle Scholar
  32. 32.
    Geyer, H., Ulbig, P., Gornert, M.: Measurement of densities and excess molar volumes for (1,2-ethanediol, or 1,2-propanediol, or 1,2-butanediol + water) at the temperatures (278.15, 288.15, 298.15, 308.15, and 318.15) K and for (2,3-butanediol + water) at the temperatures (308.15, 313.15, and 318.15) K. J. Chem. Thermodyn. 32, 1585–1596 (2000)CrossRefGoogle Scholar
  33. 33.
    Wohlfarth, C., Wohlfarth, B.: Surface Tension of Pure Liquids and Binary Liquid Mixtures, vol. 24. Springer, New York (2008)Google Scholar
  34. 34.
    Compostizo, A., Pascual, A.D., Colin, A.C., Rubio, R.G.: Density–pressure relationship in hydrogen-bonded mixtures: 1,4-butanediol + 1-dodecanol. J. Chem. Eng. Data 50, 591–595 (2005)CrossRefGoogle Scholar
  35. 35.
    Huh, C., Mason, S.G.: A rigorous theory of ring tensiometery. Colloid Polym. Sci. 253, 266–280 (1975)CrossRefGoogle Scholar
  36. 36.
    Rafati, A.A., Ghasemian, E.: Surface tension and surface properties of binary mixtures of 1,4-dioxane or N, N-dimethyl formamide with n-alkyl acetates. J. Chem. Eng. Data 54, 3224–3228 (2009)CrossRefGoogle Scholar
  37. 37.
    Constantinides, A.: Applied Numerical Methods with Personal Computers, 2nd edn. McGraw-Hill, Singapore (1997)Google Scholar
  38. 38.
    Paquette, L.J.: M.S. thesis. Laurentian University, Canada (1982)Google Scholar
  39. 39.
    Rafati, A.A., Bagheri, A., Khanchi, A.R., Ghasemian, E., Najafi, M.: Application of the UNIFAC model for prediction of surface tension and thickness of the surface layer in the binary mixtures. J. Colloid Interface Sci. 355, 252–258 (2011)CrossRefGoogle Scholar
  40. 40.
    Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York (2004)Google Scholar
  41. 41.
    Bagheri, A., Amiri-Majed, A.H.: Surface thermodynamics of binary mixtures of aliphatic alcohols in heavy water. J. Chem. Thermodyn. 51, 45–50 (2012)CrossRefGoogle Scholar
  42. 42.
    Torres, R.B., Francesconi, A.Z., Volpe, P.L.O.: Experimental study and modelling using the ERAS-model of the excess molar volume of acetonitrile–alkanol mixtures at different temperatures and atmospheric pressure. Fluid Phase Equilib. 210, 287–306 (2003)CrossRefGoogle Scholar
  43. 43.
    Calvo, E., Pintos, M., Amigo, A., Bravo, R.: Surface tension and density of mixtures of 1,3-dioxolane + alkanols at 298.15 K: analysis under the extended Langmuir model. J. Colloid Interface Sci. 272, 438–443 (2004)CrossRefGoogle Scholar
  44. 44.
    Rafati, A.A., Bagheri, A., Najafi, M.: Surface tension of non-ideal binary and ternary liquid mixtures at various temperatures and p = 81.5 kPa. J. Chem. Thermodyn. 43, 248–254 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. Bagheri
    • 1
  • A. A. Rafati
    • 2
  • A. Adeli Tajani
    • 1
  • A. R. Afraz Borujeni
    • 2
  • A. Hajian
    • 2
  1. 1.Department of ChemistrySemnan UniversitySemnanIran
  2. 2.Department of Physical Chemistry, Faculty of ChemistryBu-Ali Sina UniversityHamedanIran

Personalised recommendations