Advertisement

Journal of Solution Chemistry

, Volume 42, Issue 9, pp 1729–1747 | Cite as

Speciation and Stability of Dioxovanadium(V) Complexes with Diethylenetriaminepentaacetic Acid at Different Ionic Strengths

  • Kavosh Majlesi
  • Saghar Rezaienejad
  • Sara Balali
Article
  • 117 Downloads

Abstract

UV spectroscopic measurements have been used to determine the binding ability of diethylenetriaminepentaacetic acid (DTPA) ligand towards the \( {\text{VO}}_2^+ \) ion at different ionic strengths of sodium chloride (0.11–0.95 mol·dm−3) and at T = 298 K. Dissociation constants of DTPA have been gathered from the literature. Calculations allowed us to identify the formation of three species VO2H3L, VO2H2L and VO2HL2− in the pH range of about 1.00–2.50. All of these complexes were characterized in terms of their stability constants on the basis of two different thermodynamic models (extended Debye–Hückel type and specific ion interaction theory) for the investigation of the ionic strength dependence of the stability and dissociation constants. Comparison with literature data is also reported.

Keywords

Thermodynamics UV spectroscopy SIT EDH 

References

  1. 1.
    Rehder, D.: Bioinorganic vanadium chemistry. Wiley, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Thompson, K.H., Orvig, C.: Vanadium in diabetes: 100 years from phase 0 to phase 1. J. Inorg. Biochem. 100, 1925–1935 (2006)CrossRefGoogle Scholar
  3. 3.
    Thompson, K.H., Orvig, C.: Metal complexes in medicinal chemistry: new vistas and challenges in drug design. J. Chem. Soc. Dalton Trans. 761–764 (2006). doi: 10.1039/b513476e
  4. 4.
    Faneca, H., Figueiredo, V.A., Tomaz, I., Goncalves, G., Avecilla, F., Pedroso de Lima, M.C., Geraldes, C.F.G.C., Pessoa, J.C., Castro, M.M.C.A.: Vanadium compounds as therapeutic agents: some chemical and biochemical studies. J. Inorg. Biochem. 103, 601–608 (2009)CrossRefGoogle Scholar
  5. 5.
    Giovenzana, G.B., Baranyai, Z., Aime, S., Cavallotti, C., Imperio, D., Palmisano, G.: NorDATA: an original ligand based on the norborane skeleton. Synthesis and thermodynamic characterization of metal complexes. Polyhedron 27, 3683–3687 (2008)CrossRefGoogle Scholar
  6. 6.
    Anderegg, G., A-Neu, F., Delgado, R., Felcman, J., Popov, K.: Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications. Pure Appl. Chem. 77, 1445–1495 (2005)CrossRefGoogle Scholar
  7. 7.
    De Stefano, C., Gianguzza, A., Pettignano, A., Sammartano, S.: Palladium(II) complexes of aminopolycarboxylic ligands in aqueous solution. J. Chem. Eng. Data 56, 4759–4771 (2011)CrossRefGoogle Scholar
  8. 8.
    Gandolfo, F., Amorello, D., Romano, V., Zingales, R.: Complex formation of the uranyl (UO2 2+) ion with the diethylenetriaminopentaacetate (DTPA) ligand at 25 °C in 3 M sodium perchlorate. J. Chem. Eng. Data 56, 2110–2118 (2011)CrossRefGoogle Scholar
  9. 9.
    Chen, Z., Owens, G., Naidu, R.: Confirmation of vanadium complex formation using electrospray mass spectrometry and determination of vanadium speciation by sample stacking capillary electrophoresis. Anal. Chim. Acta 585, 32–37 (2007)CrossRefGoogle Scholar
  10. 10.
    Chen, Z., Naidu, R.: On-column complexation and simultaneous separation of vanadium(IV) and vanadium(V) by capillary electrophoresis with direct UV detection. Anal. Bioanal. Chem. 374, 520–525 (2002)CrossRefGoogle Scholar
  11. 11.
    Padarauskas, A., Schwedt, G.: Capillary electrophoresis in metal analysis: investigations of multi-elemental separation of metal chelates with aminopolycarboxylic acids. J. Chromatogr. A 773, 351–360 (1997)CrossRefGoogle Scholar
  12. 12.
    Tishchenko, R.P., Pechurova, N.I., Martynenko, L.I., Spitsyn, V.I.: Study of the kinetics of the oxidation of complexones by vanadium(V). Russ. Chem. Bull. 22, 1173–1175 (1973)CrossRefGoogle Scholar
  13. 13.
    Majlesi, K., Rezaienejad, S., Rouhzad, A.: Ionic strength dependence of dioxovanadium(V) complexation with ethylene glycol-bis(2-aminoethylether)-N, N, N′, N′-tetraacetic acid. J. Chem. Eng. Data 56, 541–550 (2011)CrossRefGoogle Scholar
  14. 14.
    Majlesi, K.: Determination of solvatochromic regression coefficients for the molybdenum(VI) complex with ethylenediamine-N, N′-diacetic acid by using Kamlet–Abboud–Taft equation. Chin. J. Chem. 28, 1973–1977 (2010)CrossRefGoogle Scholar
  15. 15.
    Majlesi, K., Rezaienejad, S.: Complexation of dioxovanadium(V) with methyliminodiacetic acid in NaClO4 aqueous solutions at different ionic strengths by using an extended Debye–Hückel equation, specific ion interaction theory, and parabolic equations. J. Chem. Eng. Data 55, 882–888 (2010)CrossRefGoogle Scholar
  16. 16.
    Majlesi, K., Rezaienejad, S.: Solvatochromic effect studies on the stability of dioxovanadium(V) complexes with ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid in different water+methanol mixtures. J. Chem. Eng. Data 55, 4491–4498 (2010)CrossRefGoogle Scholar
  17. 17.
    Majlesi, K., Gholamhosseinzadeh, M., Rezaienejad, S.: Interaction of molybdenum(VI) with methyliminodiacetic acid at different ionic strengths by using parabolic, extended Debye–Hückel and specific ion interaction models. J. Solution Chem. 39, 665–679 (2010)CrossRefGoogle Scholar
  18. 18.
    Majlesi, K.: Complexation of dioxovanadium(V) with phenylalanine and isoleucine at different ionic strengths and temperatures using Debye–Hückel and specific ion interaction theories. Rev. Inorg. Chem 29, 1–19 (2009)CrossRefGoogle Scholar
  19. 19.
    Majlesi, K., Rezaienejad, S.: Complexation of tungsten(VI) with ethylenediaminetetraacetic acid and iminodiacetic acid at different ionic strengths using the Debye–Hückel and specific ion interaction theories. Russ. Chem. Bull. 58, 502–506 (2009)CrossRefGoogle Scholar
  20. 20.
    Majlesi, K., Rezaienejad, S.: Application of the parabolic model, specific ion interaction, and Debye–Hückel theories for the complexation of dioxovanadium(V) with ethylenediamine-N, N′-diacetic acid. J. Chem. Eng. Data 54, 1483–1492 (2009)CrossRefGoogle Scholar
  21. 21.
    Majlesi, K., Momeni, N.: Complexation of molybdenum(VI) with ethylenediaminediacetic acid in different water+methanol solutions. J. Chem. Eng. Data 54, 2479–2482 (2009)CrossRefGoogle Scholar
  22. 22.
    Majlesi, K., Rezaienejad, S.: Application of specific ion interaction theory and parabolic models for the molybdenum(VI) and tungsten(VI) complexes with NTA and IDA at different ionic strengths. Chin. Chem. Lett. 20, 759–762 (2009)CrossRefGoogle Scholar
  23. 23.
    Majlesi, K., Rezaienejad, S.: Study on the complexation of molybdenum(VI) with iminodiacetic acid and ethylenediamine-N,N′-diacetic acid by specific ion interaction and Debye–Hückel theories. Chin. J. Chem. 25, 1815–1820 (2007)CrossRefGoogle Scholar
  24. 24.
    Majlesi, K.: Ionic strength dependence patterns for the Mo(VI) + NTA and Mo(VI) + EDTA systems. Rev. Inorg. Chem. 26, 507–520 (2006)CrossRefGoogle Scholar
  25. 25.
    Lagrange, P., Schneider, M., Lagrange, J.: Complexes of oxovanadium(IV), dioxovanadium(V) and dioxouranium(VI) with amino acids in aqueous solution. J. Chim. Phys. 95, 2280–2299 (1998)CrossRefGoogle Scholar
  26. 26.
    De Stefano, C., Gianguzza, A., Piazzese, D., Sammartano, S.: Interactions of diethylenetriaminepentaacetic acid (DTPA) and triethylenetetraaminehexaacetic acid (TTHA) with major components of natural waters. Anal. Bioanal. Chem. 375, 956–967 (2003)Google Scholar
  27. 27.
    Tishchenko, R.P., Pechurova, N.I., Spitsyn, V.I.: Investigation of the interaction of compounds of vanadium(V) with complexones. Russ. Chem. Bull. 21, 2336–2338 (1972)CrossRefGoogle Scholar
  28. 28.
    Daniele, P.G., Rigano, C., Sammartano, S., Zelano, V.: Ionic strength dependence of formation constants: XVIII. The hydrolysis of iron(III) in aqueous KNO3 solutions. Talanta 41, 1577–1582 (1994)CrossRefGoogle Scholar
  29. 29.
    Daniele, P.G., Rigano, C., Sammartano, S.: Ionic strength dependence of formation constants. Alkali metal complexes of EDTA, NTA, diphosphate and tripolyphosphate in aqueous solution. Anal. Chem. 57, 2956–2960 (1985)CrossRefGoogle Scholar
  30. 30.
    De Stefano, C., Gianguzza, A., Piazzese, D., Sammartano, S.: Polyacrylate protonation in various aqueous ionic media at different temperatures and ionic strengths. J. Chem. Eng. Data 45, 876–881 (2000)CrossRefGoogle Scholar
  31. 31.
    Bretti, C., De Stefano, C., Foti, C., Sammartano, S.: Total and specific solubility and activity coefficients of neutral species of (CH2)2i–2Ni(CH2COOH)i+2 complexons in aqueous NaCl solutions at different ionic strengths, (0 ≤ I ≤ 5) mol·L−1, and 298.15 K. J. Chem. Eng. Data 56, 437–443 (2011)CrossRefGoogle Scholar
  32. 32.
    Bretti, C., De Stefano, C., Manfredi, G., Sammartano, S.: Solubility, activity coefficients and acid–base properties of three naphthol derivatives in NaCl(aq) at different ionic strengths and at T = 298.15 K. J. Mol. Liq. 158, 50–56 (2011)CrossRefGoogle Scholar
  33. 33.
    Bretti, C., De Stefano, C., Lando, G., Sammartano, S.: Activity coefficients, acid–base properties and weak Na+ ion pair formation of some resorcinol derivatives. Fluid Phase Equilib. 292, 71–79 (2010)CrossRefGoogle Scholar
  34. 34.
    Foti, C., Sammartano, S.: Ionic strength dependence of protonation constants of carboxylate ions in NaClaq (0 < I < 5.6 mol·kg−1) and KClaq (0 < I < 4.5 mol·kg−1): specific ion interaction theory and Pitzer parameters and the correlation between them. J. Chem. Eng. Data 55, 904–911 (2010)CrossRefGoogle Scholar
  35. 35.
    De Stefano, C., Gianguzza, A., Pettignano, A., Sammartano, S., Sciarrino, S.: On the complexation of Cu(II) and Cd(II) with polycarboxyl ligands. Potentiometric studies with ISE-H+, ISE-Cu2+, and ISE-Cd2+. J. Chem. Eng. Data 55, 714–722 (2010)CrossRefGoogle Scholar
  36. 36.
    Crea, P., De Stefano, C., Millero, F.J., Sammartano, S., Sharma, V.K.: Dissociation constants of protonated oxidized glutathione in seawater media at different salinities. Aquatic Geochem. 16, 447–466 (2010)CrossRefGoogle Scholar
  37. 37.
    Cigala, R.M., Crea, F., De Stefano, C., Lando, G., Milea, D., Sammartano, S.: Electrochemical study on the stability of phytate complexes with Cu2+, Pb2+, Zn2+, and Ni2+: a comparison of different techniques. J. Chem. Eng. Data 55, 4757–4767 (2010)CrossRefGoogle Scholar
  38. 38.
    Bretti, C., De Stefano, C., Foti, C., Giuffre, O., Sammartano, S.: Thermodynamic protonation parameters of some sulfur-containing anions in NaClaq and (CH3)4NClaq at t = 25 °C. J. Solution Chem. 38, 1225–1245 (2009)CrossRefGoogle Scholar
  39. 39.
    Battaglia, G., Crea, F., Crea, P., De Stefano, C., Sammartano, S.: Medium effect on the acid-base properties of branched polyethylenimine in different aqueous electrolyte solutions. J. Chem. Eng. Data 54, 502–510 (2009)CrossRefGoogle Scholar
  40. 40.
    Battaglia, G., Cigala, R.M., Crea, F., Sammartano, S.: Solubility and acid-base properties of ethylenediaminetetraacetic acid in aqueous NaCl solution at 0 ≤ I ≤ 6 mol·kg−1 and T = 298.15 K. J. Chem. Eng. Data 53, 363–367 (2008)CrossRefGoogle Scholar
  41. 41.
    Brönsted, J.N.: Studies on solubility. IV. The principle of the specific interaction of ions. J. Am. Chem. Soc. 44, 877–898 (1922)CrossRefGoogle Scholar
  42. 42.
    Scatchard, G.: Concentrated solutions of strong electrolytes. Chem. Rev. 19, 309–327 (1936)CrossRefGoogle Scholar
  43. 43.
    Guggenheim, E.A., Turgeon, J.C.: Specific interaction of ions. Trans. Faraday Soc. 51, 747–761 (1955)CrossRefGoogle Scholar
  44. 44.
    Grenthe, I., Mompean, F., Spahiu, K., Wanner, H. (2013) TDB-2 guidelines for the extrapolation to zero ionic strength. http://www.oecdnea.org/dbtdb/guidelines/tdb2.pdf. Accessed 5 Sept 2013
  45. 45.
    Ciavatta, L.: The specific interaction theory in evaluating ionic equilibria. Ann. Chim. 70, 551–567 (1980)Google Scholar
  46. 46.
    Crea, F., De Stefano, C., Gianguzza, A., Piazzese, D., Sammartano, S.: Protonation of carbonate in aqueous tetraalkylammonium salts at 25 °C. Talanta 68, 1102–1112 (2006)CrossRefGoogle Scholar
  47. 47.
    Crea, F., Foti, C., De Stefano, C., Sammartano, S.: SIT parameters for 1:2 electrolytes and correlation with Pitzer coefficients. Ann. Chim. 97, 85–95 (2007)CrossRefGoogle Scholar
  48. 48.
    Berto, S., Crea, F., Daniele, P.G., De Stefano, C., Prenesti, E., Sammartano, S.: Sequestering ability of dicarboxylic ligands towards dioxouranium(VI) in NaCl and KNO3 aqueous solutions at T = 298.15 K. J. Solution Chem. 38, 1343–1356 (2009)CrossRefGoogle Scholar
  49. 49.
    Lee, M.-H., Tae-Sub, O.: Carbon-13 and vanadium-51 nuclear magnetic resonance studies of vanadium(V)- aminopolycarboxylic acids (I). J. Korean Chem. Soc. 27, 117–125 (1983)Google Scholar
  50. 50.
    Kula, R.J.: Solution equilibria and structures of molybdenum(VI) chelates, N-methyliminodiacetic acid. Anal. Chem. 38, 1382–1388 (1966)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kavosh Majlesi
    • 1
  • Saghar Rezaienejad
    • 1
  • Sara Balali
    • 1
  1. 1.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations