Journal of Solution Chemistry

, Volume 42, Issue 7, pp 1545–1557 | Cite as

Complexation of Uranium(VI) by Gluconate in Alkaline Solutions



Gluconate (C6H11O7) is a polyhydroxycarboxylic acid that can be assumed as a representative model compound for a wide variety of additives in cement formulations. It can play an important role in the cementitious environments characteristic of radioactive waste disposal sites, as actinides (such as U(VI)) may form stable complexes with gluconate. As a consequence, the presence of the organic ligand can lead to an enhancement of actinide mobility. The results presented in this work show that gluconate increases significantly the uranium solubility at pHc = 12; the study of U(VI) speciation in alkaline solutions is complex, mainly due to formation of sparingly soluble uranates of varying compositions (e.g. sodium and potassium uranates). UV–Vis measurements in the alkaline pH range have been used to determine the stability constant for the formation of a 1:1 U(VI):gluconate complex. The results obtained with spectroscopic techniques allow explaining the results from solubility experiments, from both over- and under-saturation conditions.


Uranium Gluconate Solubility UV–Vis 



The authors would like to thank the French National Agency for radioactive waste management (ANDRA) for funding this work through the Thermo Chimie project. E. Giffaut and L. Duro are acknowledged for fruitful scientific discussions. Thanks are due to the reviewers for their comments, which significantly improved the quality of the original manuscript.


  1. 1.
    Bradbury, M.H., Van Loon, L.R.: Cementitious near-field sorption databases for performance assessment of a L/ILW repository in a Palfris Marl host rock. CEM-94: Update I, June 1997. Technical report 98-01, PSI (1998)Google Scholar
  2. 2.
    Baston, G.M.N., Berry, J.A., Bond, K.A., Brownsword, M., Linklater, C.M.: Effects of organic degradation products on the sorption of actinides. Radiochim. Acta 52/53, 249–356 (1992)Google Scholar
  3. 3.
    Felmy, A.R.: Chemical speciation of americium, curium and selected tetravalent actinides in high level waste. Technical Report EMSP Project 73749, PNNL (2004)Google Scholar
  4. 4.
    Hummel, W., Anderegg, G., Puigdomenech, I., Rao, L., Tochiyama, O.: Chemical Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni, and Zr with Selected Organic Ligands. Elsevier, Amsterdam (2005)Google Scholar
  5. 5.
    Sawyer, D.T., Kula, R.: Uranium(VI) gluconate complexes. Inorg. Chem. 1, 303–309 (1962)CrossRefGoogle Scholar
  6. 6.
    Tits, J., Wieland, E., Bradbury, M.: The effect of isosaccharinic acid and gluconic acid on the retention of Eu(III), Am(III) and Th(IV) by calcite. Appl. Geochem. 20, 2082–2096 (2005)CrossRefGoogle Scholar
  7. 7.
    Zhang, Z., Helms, G., Clark, S., Tian, G., Zanonato, P., Rao, L.: Complexation of uranium(VI) by gluconate in acidic solutions: a thermodynamic study with structural analysis. Inorg. Chem. 48, 3814–3824 (2009)CrossRefGoogle Scholar
  8. 8.
    Sawyer, D.T.: Metal–gluconate complexes. Chem. Rev. 64, 633–643 (1964)CrossRefGoogle Scholar
  9. 9.
    Meinrath, G.: Aquatic chemistry of uranium. Geoscience 1, 1–101 (1998)Google Scholar
  10. 10.
    Kitamura, A., Kohara, Y.: Carbonate complexation of neptunium(IV) in highly basic solutions. Radiochim. Acta 92, 583–588 (2004)CrossRefGoogle Scholar
  11. 11.
    Gran, G.: Determination of the equivalence point in potentiometric titrations. Part II. The Analyst 77, 661–671 (1952)CrossRefGoogle Scholar
  12. 12.
    Yamamura, T., Kitamura, A., Fukui, A., Nishikawa, S., Yamamoto, T., Moriyama, H.: Solubility of U(VI) in highly basic solutions. Radiochim. Acta 83, 139–146 (1998)Google Scholar
  13. 13.
    Herbelin, A., Westall, J. FITEQL 4.0: a computer program for determination of chemical equilibrium constants from experimental data. Technical Report 99-01. Department of Chemistry, Oregon State University, Corvallis (1999)Google Scholar
  14. 14.
    Guillaumont, R., Fanghänel, J., Neck, V., Fuger, J., Palmer, D.A., Grenthe, I., Rand, M.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Elsevier, Amsterdam (2003)Google Scholar
  15. 15.
    Rand, M., Fuger, J., Grenthe, I., Neck, V., Rai, D.: Chemical Thermodynamics of Thorium. Elsevier, Amsterdam (2009)Google Scholar
  16. 16.
    Grenthe, I., Fuger, J., Konings, R., Lemire, R., Muller, A., Nguyen-Trung, C., Wanner, H.: Chemical Thermodynamics 1: Chemical Thermodynamics of Uranium. Elsevier, Amsterdam (1992)Google Scholar
  17. 17.
    Lemire, R.J., Fuger, J., Nitsche, H., Potter, P., Rand, M.H., Rydberg, J., Spahiu, K., Sullivan, J.C., Ullman, W.J., Vitorge, P., Wanner, H.: Chemical Thermodynamics of Neptunium and Plutonium. Elsevier, Amsterdam (2001)Google Scholar
  18. 18.
    Warwick, P., Evans, N., Vines, S.: Studies on some divalent metal alpha-isosaccharinic acid complexes. Radiochim. Acta 94, 363–368 (2006)CrossRefGoogle Scholar
  19. 19.
    Sutton, M., Warwick, P., Hall, A., Jones, C.: Carbonate induced dissolution of uranium containing precipitates under cement leachate conditions. J. Environ. Monit. 1, 177–182 (1999)CrossRefGoogle Scholar
  20. 20.
    Bruneau, E., Lavabre, D., Levy, G., Micheau, J.C.: Quantitative analysis of continuous-variation plots with a comparison of several methods: spectrophotometric study of organic and inorganic 1:1 stoichiometry complexes. J. Chem. Educ. 69, 833–837 (1992)CrossRefGoogle Scholar
  21. 21.
    Rossotti, F.J.C., Rossotti, H.: The Determination of Stability Constants and Other Equilibrium Constants in Solution. McGraw-Hill Book Company, Inc., New York (1961)Google Scholar
  22. 22.
    Clark, D.L., Conradson, S.D., Donohoe, R.J., Keogh, D.W., Morris, D.E., Palmer, P.D., Rogers, R.D., Tait, C.D.: Chemical speciation of the uranyl ion under highly alkaline conditions. Synthesis, structures, and oxo ligand exchange dynamics. Inorg. Chem. 38, 1456–1466 (1999)CrossRefGoogle Scholar
  23. 23.
    Sandino, A., Bruno, J.: The solubility of (UO2)3(PO4)2·4H2O(s) and the formation of U(VI) phosphate complexes: their influence in uranium speciation in natural waters. Geochim. Cosmochim. Acta 56, 4135–4145 (1992)CrossRefGoogle Scholar
  24. 24.
    Havel, J., Soto-Guerrero, J., Lubal, P.: Spectrophotometric study of uranyl–oxalate complexation in solution. Polyhedron 21, 1411–1420 (2002)CrossRefGoogle Scholar
  25. 25.
    Meyer Jr, A., Ayres, G.: The mole ratio method for spectrophotometric determination of complexes in solution. J. Am. Chem. Soc. 79, 49–53 (1957)CrossRefGoogle Scholar
  26. 26.
    Birjkumar, K.H., Bryan, N.D., Kaltsoyannis, N.: Computational investigation of the speciation of uranyl gluconate complexes in aqueous solution. Dalton Trans. 40, 11248–11257 (2012)CrossRefGoogle Scholar
  27. 27.
    Birjkumar, K.H., Bryan, N.D., Kaltsoyannis, N.: Is gluconate a good model for isosaccharinate in uranyl(VI) chemistry? A DFT study. Dalton Trans. 41, 5542–5552 (2012)CrossRefGoogle Scholar
  28. 28.
    Colàs, E., Grivé, M., Rojo, I., Duro, L.: Solubility of ThO2·xH2O(am) in the presence of gluconate. Radiochim. Acta 99, 269–273 (2011)CrossRefGoogle Scholar
  29. 29.
    Glaus, M.A., Van Loon, L.R.: A generic procedure for the assessment of the effect of concrete admixtures on the retention behaviour of cement for radionuclides: concept and case studies. Technical Report 04-02, PSI (2004)Google Scholar
  30. 30.
    Glaus, M.A., Laube, A., Van Loon, L.R.: Solid–liquid distribution of selected concrete admixtures in hardened cement pastes. Waste Manag. 26, 741–751 (2006)CrossRefGoogle Scholar
  31. 31.
    Wieland, E., Van Loon, L.R.: Cementitious near-field sorption database for performance assessment of an ILW repository in opalinus clay. Technical Report 03-06, PSI (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Amphos 21BarcelonaSpain
  2. 2.Fundació CTM Centre TecnològicManresaSpain

Personalised recommendations