Journal of Solution Chemistry

, Volume 42, Issue 7, pp 1393–1403 | Cite as

An Aqueous Thermodynamic Model for the Solubility of Potassium Ferrate in Alkaline Solutions to High Ionic Strengths from 283.15 to 333.15 K



Potassium ferrate, K2FeO4(cr), has numerous promising environmental applications. An aqueous thermodynamic model applicable to high ionic strengths is essential for guiding its applications. In this study, a thermodynamic model is developed for the solubility of K2FeO4(cr) in aqueous alkali metal hydroxide solutions, from 283.15 to 333.15 K to high ionic strengths, up to saturation of KOH and NaOH, based on the Pitzer activity coefficient model for aqueous species. The solubility products for K2FeO4(cr) at infinite dilution in the temperature range from 283.15 to 333.15 K were obtained. Based on the thermodynamic solubility product of K2FeO4(cr) at 298.15 and its temperature dependence, in combination with thermodynamic properties for \( {\text{FeO}}_{4}^{2 - } \) and K+ from the literature, standard thermodynamic properties of K2FeO4(cr) at 298.15 K and 0.1 MPa (1 bar) are derived for the first time as follows: Δf G 0 = −(896 ± 8) kJ·mol−1, Δf H 0 = −(1026 ± 4) kJ·mol−1, and S 0 = (130 ± 17) J·mol−1·K−1. Using the above thermodynamic properties for K2FeO4(cr), the potential presence or preservation of K2FeO4(cr) in the Martian soils under the conditions relevant to Mars were quantitatively evaluated. Thermodynamic calculations pertaining to the Martian conditions indicate that the presence or preservation of K2FeO4(cr) as a strong oxidant in the Martian soils can be supported.


K2FeO4(cr) Solubility product Aqueous solubility Standard thermodynamic properties 



The author would like to extend his appreciation to the two journal reviewers for their detailed and insightful reviews, and to the Editor-in-Chief, Dr. Joseph Rard, for his editorial efforts. Their reviews and efforts have significantly improved the manuscript.


  1. 1.
    Sharma, V.K.: Potassium ferrate(VI): an environmentally friendly oxidant. Adv. Environ. Res. 6, 143–456 (2002)CrossRefGoogle Scholar
  2. 2.
    Jiang, J.-Q.: Research progress in the use of ferrate(VI) for the environmental remediation. J. Hazardous Mater. 146, 617–623 (2007)CrossRefGoogle Scholar
  3. 3.
    Mácová, Z., Bouzek, K., HíveŠ, J., Sharma, V.K., Terryn, R.J., Baum, J.C.: Research progress in the electrochemical synthesis of ferrate(VI). Electrochim. Acta 54, 2673–2683 (2009)CrossRefGoogle Scholar
  4. 4.
    Jiang, J.-Q., Wang, S., Panagoulopoulos, A.: The role of potassium ferrate(VI) in the inactivation of Escherichia coli and in the reduction of COD for water remediation. Desalination 210, 266–273 (2007)CrossRefGoogle Scholar
  5. 5.
    Sharma, V.K., Burnett, C.R., O’Connor, D.B., Cabelli, D.: Iron(VI) and iron(V) oxidation of thiocyanate. Environ. Sci. Technol. 36, 4182–4186 (2002)CrossRefGoogle Scholar
  6. 6.
    Delaude, L., Laszlo, P.: A novel oxidizing reagent based on potassium ferrate(VI). J. Org. Chem. 61, 6360–6370 (1996)CrossRefGoogle Scholar
  7. 7.
    Greene, R., von Fahnestock, F.M., Monzyk, B.: Potassium ferrate: a novel chemical warfare agent decontaminant. In: 2004 Scientific Conference on Chemical and Biological Defense Research. Hunt Valley, Maryland, November 15–17, 2004Google Scholar
  8. 8.
    Licht, S., Wang, B., Ghosh, S.: Energetic iron(VI) chemistry: the super-iron battery. Science 285, 1039–1042 (1999)CrossRefGoogle Scholar
  9. 9.
    Yu, X., Licht, S.: Advances in Fe(VI) charge storage: part II. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J. Power Sources 171, 1010–1022 (2007)CrossRefGoogle Scholar
  10. 10.
    Tsapin, A.I., Goldfield, M.G., McDonald, G.D., Nealson, K.H., Moskowvitz, B., Solheid, P., Kemmer, K.M., Kelly, S.D., Orlandini, K.A.: Iron(VI): hypothetical candidate for the Martian oxidant. Icarus 147, 68–78 (2000)CrossRefGoogle Scholar
  11. 11.
    Crawford, R.L., Paszczynski, A., Allenbach, L.: Potassium ferrate [Fe(VI)] does not mediate self-sterilization of a surrogate Mars soil. BMC Microbiology 3(4), 1–11 (2003). Accessed 23 Aug 2012
  12. 12.
    Thompson, G.W., Ockermana, L.T., Schreyer, J.M.: Preparation and purification of potassium ferrate VI. J. Am. Chem. Soc. 73, 1379–1381 (1951)CrossRefGoogle Scholar
  13. 13.
    Bailie, A.G., Bouzek, K., Lukasek, P., Rousar, I., Wragg, A.A.: Solubility of potassium ferrate in 12 M alkaline solutions between 20°C and 60°C. J. Chem. Technol. Biotechnol. 66, 35–40 (1996)CrossRefGoogle Scholar
  14. 14.
    Licht, S., Wang, B.-H., Gosh, S., Li, J., Naschitz, V.: Insoluble Fe(VI) compounds: effects on the super-iron battery. Electrochem. Commun. 1, 522–526 (1999)CrossRefGoogle Scholar
  15. 15.
    Yang, W.-H., Wang, J.-M., Pan, T., Xu, J.-J., Zhang, J.-Q., Cao, C.-N.: Studies on the electrochemical characteristics of K2Sr(FeO4)2 electrode. Electrochem. Commun. 4, 710–715 (2002)CrossRefGoogle Scholar
  16. 16.
    Xu, Z.-H., Wang, J.-M., Shao, H.-B., Zhang, J.-Q.: Physical properties and electrochemical performance of solid K2FeO4 samples prepared by ex-situ and in situ electrochemical methods. Chin. J. Chem. Eng. 15, 39–43 (2007)CrossRefGoogle Scholar
  17. 17.
    Sharma, V.K., Mácová, Z., Bouzek, K., Millero, F.J.: Solubility of ferrate(VI) in NaOH–KOH mixtures at different temperatures. J. Chem. Eng. Data 55, 5594–5597 (2010)CrossRefGoogle Scholar
  18. 18.
    He, W.-C., Wang, J.-M., Zhou, L., Chen, Q.-Q., Shen, B.-C., Zhang, J.-Q.: A study on the synthesis and physicochemistry properties of tripotassium sodium ferrate(VI) (in Chinese with English abstract). Acta Chim. Sin. 65, 2261–2265 (2007)Google Scholar
  19. 19.
    Wolery, T.J.: EQ3NR: a computer program for geochemical aqueous speciation-solubility calculations: theoretical manual, user’s guide, and related documentation (Version 7.0). UCRL-MA-110662 PT III. Lawrence Livermore National Laboratory, Livermore (1992)CrossRefGoogle Scholar
  20. 20.
    Laliberte, M., Cooper, W.E.: Model for calculating the density of aqueous electrolytes solutions. J. Chem. Eng. Data 49, 1141–1151 (2004)CrossRefGoogle Scholar
  21. 21.
    Harvie, C.E., Moller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25°C. Geochim. Cosmochim. Acta 48, 723–751 (1984)CrossRefGoogle Scholar
  22. 22.
    Pitzer, K.S.: Ion interaction approach: theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., Chap. 3, pp. 75–153. CRC Press, Boca Raton (1991)Google Scholar
  23. 23.
    Licht, S., Naschitz, V., Rozen, D., Halperin, N.: Cathodic charge transfer and analysis of Cs2FeO4, K2FeO4, and mixed alkali Fe(VI) ferrate super-irons. J. Electrochem. Soc. 151, A1147–A1151 (2004)CrossRefGoogle Scholar
  24. 24.
    Wood, R.H.: The heat, free energy and entropy of the ferrate(VI) ion. J. Am. Chem. Soc. 80, 2038–2041 (1958)CrossRefGoogle Scholar
  25. 25.
    Rossoni, F., Wagman, D.D., Evans, W.H., Levine, S., Jaffe, I.: Selected values of chemical thermodynamic properties. Circular of the National Bureau of Standards, US Department of Commerce, United States Government Printing Office, Washington, D.C., (1952)Google Scholar
  26. 26.
    Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Buttall, R.L.: The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11 (Suppl. No. 2), 1–392 (1982)Google Scholar
  27. 27.
    Hartman, H., McKay, C.P.: Oxygenic photosynthesis and the oxidation state of Mars. Planet. Space Sci. 43, 123–128 (1995)CrossRefGoogle Scholar
  28. 28.
    Hecht, M.H., Kounaves, S.P., Quinn, R.C., West, S.J., Young, S.M.M., Ming, D.W., Catling, D.C., Clark, B.C., Boynton, W.V., Hoffman, J., De Flores, L.P., Gospodinova, K., Kapit, J., Smith, P.H.: Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander site. Science 325, 64–67 (2009)Google Scholar
  29. 29.
    Williams, D.R.: Mars Fact Sheet. (2010). Accessed 28 Sept 2012

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of IdahoMoscowUSA
  2. 2.Sandia National LaboratoriesCarlsbad Programs GroupCarlsbadUSA

Personalised recommendations