Journal of Solution Chemistry

, Volume 42, Issue 1, pp 80–101 | Cite as

Solubilization and Release of a Model Drug Nimesulide from PEO–PPO–PEO Block Copolymer Core–Shell Micelles: Effect of Size of PEO Blocks



The commercially available polypropylene oxide (PPO)–polyethylene oxide (PEO) symmetrical triblock copolymers (Pluronics®) have been recognized as pharmaceutical excipients and used in a variety of applications. This paper reports studies on micellar and solubilization behavior of three PEO–PPO–PEO block copolymers, viz. P103, P104 and P105 (same PPO mol. wt = 3250 g·mol−1 but different  % PEO = 30, 40 and 50 %, respectively) in aqueous solutions. Critical micellization concentrations (CMCs), critical micellization temperatures (CMTs), and micelle size/polydispersity for copolymers with and without the drug, nimesulide (NIM), are reported. The solubilization of NIM is significantly enhanced with increasing hydrophobicity (P103 > P104 > P105), concentration, temperature and in the presence of added salt. The copolymer hydrophobicity, temperature and the drug loading strongly affect micelle behavior. The micelle–water partition coefficient (P) and thermodynamic parameters of solubilization, viz. Gibbs energy (\( \Updelta G_{s}^{\text{o}} \)), enthalpy (\( \Updelta H_{s}^{\text{o}} \)) and entropy (\( T\Updelta S_{s}^{\text{o}} \)), were calculated. The solubilization site of the drug in different micellar solutions and its release from Pluronics® micelles in phosphate buffer saline (PBS) solution at 37 °C were examined. The kinetics of NIM exhibits burst release characteristics, which are believed to be controlled by degradation of the copolymers. These studies were carried out to investigate the feasibility of using Pluronics® as a release vehicle of nimesulide in vitro. From the results, it was concluded that Pluronic® based formulations might be practical for drug delivery.


Amphiphilic block copolymer Drug solubilization Pluronic® micelle Release kinetics 



This research has been supported by the BRNS and GUJCOST.


  1. 1.
    Nakashima, K., Bahadur, P.: Aggregation of water-soluble block copolymers in aqueous solutions: Recent trends. Adv. Colloid Interface Sci. 123–126, 75–96 (2006)CrossRefGoogle Scholar
  2. 2.
    Chu, B., Zhou, Z.: Physical chemistry of polyoxyalkylene block copolymer surfactants. In: Nace, V. (ed.) Nonionic Surfactants: Polyoxyalkylene Block Copolymer Studies, vol. 60. Marcel–Dekker, Inc., New York (1996)Google Scholar
  3. 3.
    Riess, G., Bahadur, P., Hurtrez, G.: Block Copolymers. In Encyclopedia of Polymer Science and Engineering, 2nd edn. Wiley, New York (1985)Google Scholar
  4. 4.
    Nystrom, B., Kjøniksen, A.: Dynamic light scattering of a poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer in water. Langmuir 13, 4520–4526 (1997)CrossRefGoogle Scholar
  5. 5.
    Kwon, G.S., Okano, T.: Polymeric micelles as new drug carriers. Adv. Drug Deliv. Rev. 21, 107–116 (1996)CrossRefGoogle Scholar
  6. 6.
    Allen, C., Maysinger, D., Eisenberg, A.: Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf. B 16, 3–27 (1999)CrossRefGoogle Scholar
  7. 7.
    Bromberg, L.: Polymeric micelles in oral chemotherapy. J. Control Release 128, 99–112 (2008)CrossRefGoogle Scholar
  8. 8.
    Croy, S.R., Kwon, G.S.: Polymeric micelles for drug delivery. Current Pharm. Des. 12, 4669–4684 (2006)CrossRefGoogle Scholar
  9. 9.
    Rupp, C., Steckel, H., Müller, B.W.: Solubilization of poorly water-soluble drugs by mixed micelles based on hydrogenated phosphatidylcholine. Int. J. Pharm. 395, 272–280 (2010)CrossRefGoogle Scholar
  10. 10.
    Müller, B.W., Albers, E.: Complexation of dihydropyridine derivatives with cyclodextrins and 2-hydroxypropyl-β-cyclodextrin in solution. Int. J. Pharm. 79, 273–288 (1992)CrossRefGoogle Scholar
  11. 11.
    Lawrence, M.J., Rees, G.D.: Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 45, 89–121 (2000)CrossRefGoogle Scholar
  12. 12.
    Barenholz, Y.: Liposome application: Problems and prospects. Curr. Opin. Colloid Interface Sci. 6, 66–77 (2001)CrossRefGoogle Scholar
  13. 13.
    Jones, M.C., Leroux, J.C.: Polymeric micelles a new generation of colloidal drug carriers Eur. J. Pharm. Biopharm. 48, 101–111 (1999)CrossRefGoogle Scholar
  14. 14.
    Kataoka, K., Kwon, G.S., Yokoyama, M., Okano, T., Sakurai, Y.: Block copolymer micelles as vehicles for drug delivery. J. Control Release 24, 119–132 (1993)CrossRefGoogle Scholar
  15. 15.
    Jonkman-de Vries, J.D., Flora, K.P., Bult, A., Beijnen, J.H.: Pharmaceutical development of (investigational) anticancer agents for parenteral use—A review. Drug Dev. Ind. Pharm. 22, 475–494 (1996)CrossRefGoogle Scholar
  16. 16.
    Yokoyama, M., Satoh, A., Sakurai, Y., Okano, T., Matsumura, Y., Kakizoe, T., Kataoka, K.: Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J. Control Release 55, 219–229 (1998)CrossRefGoogle Scholar
  17. 17.
    Torchilin, V.P.: Structure and design of polymeric surfactant based drug delivery systems. J. Control Release 73, 172 (2001)CrossRefGoogle Scholar
  18. 18.
    Parmar, A., Singh, K., Bahadur, A., Marangoni, G., Bahadur, P.: Interaction and solubilization of some phenolic antioxidants in Pluronic® micelles. Colloids Surf. B Biointerfaces 86, 319–326 (2011)CrossRefGoogle Scholar
  19. 19.
    Bromberg, L., Tripathy, S.K., Kumar, J., Nalwa, H.S. (eds.): Handbook of Polyelectrolytes and Their Applications. American Scientific, New York (2002)Google Scholar
  20. 20.
    Barreiro-Iglesias, R., Bromberg, L., Temchenko, M., Hatton, T.A., Concheiro, A., Alvarez Lorenzo, C.: Solubilization and stabilization of camptothecin in micellar solutions of pluronic–g-poly(acrylic acid) copolymers. J. Control Release 97, 537–549 (2004)CrossRefGoogle Scholar
  21. 21.
    Dorn, K., Hoerpel, G., Ringsdorf, H.: In: Gebelein, C.G., Carraher, J.C.E. (eds.) Bioactive Polymer Systems. Plenum, New York (1985)Google Scholar
  22. 22.
    Kabanov, A.V., Alakhov, V.Y.: Pluronic block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers. Critical Reviews in Therapeutic Drug Carrier System 19, 1–72 (2002)CrossRefGoogle Scholar
  23. 23.
    Kwon, G., Naito, M., Yokoyama, M., Okano, T., Sakurai, Y., Kataoka, K.: Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res. 12, 192–195 (1995)CrossRefGoogle Scholar
  24. 24.
    Liawa, J., Lin, Y.: Evaluation of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) gels as a release vehicle for percutaneous fentanyl. J. Control Release 68, 273–282 (2000)CrossRefGoogle Scholar
  25. 25.
    Kadam, Y., Yerramilli, U., Bahadur, A., Bahadur, P.: Solubilization of poorly water-soluble drug carbamezapine in Pluronic® micelles: Effect of molecular characteristics, temperature and added salt on the solubilizing capacity. Colloids Surf. B 72, 141–147 (2009)CrossRefGoogle Scholar
  26. 26.
    Kadam, Y., Yerramilli, U., Bahadur, A., Bahadur, P.: Micelles from PEO–PPO–PEO block copolymers as nanocontainers for solubilization of a poorly water soluble drug hydrochlorothiazide. Colloids Surf. B Biointerfaces 83, 49–57 (2011)CrossRefGoogle Scholar
  27. 27.
    Parekh, P., Singh, K., Marangoni, D.G., Bahadur, P.: Micellization and solubilization of a model hydrophobic drug nimesulide in aqueous salt solutions of Tetronic® T904. Colloids Surf. B 83, 69–77 (2011)CrossRefGoogle Scholar
  28. 28.
    Barreiro-Iglesias, R., Bromberg, L., Temchenko, M., Hatton, T.A., Alvarez-Lorenzo, C., Concheiro, A.: Pluronic–g-poly(acrylic acid) copolymers as novel excipients for site specific, sustained release tablets. Eur. J. Pharm. Sci. 26, 374–385 (2005)CrossRefGoogle Scholar
  29. 29.
    Bae, K.H., Lee, Y., Park, T.G.: Oil-encapsulating PEO–PPO–PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules 8, 650–656 (2007)CrossRefGoogle Scholar
  30. 30.
    Oh, K.S.K., Lee, E., Han, S.S., Cho, S.H., Kim, D., Yuk, S.H.: Formation of core/shell nanoparticles with a lipid core and their application as a drug delivery system. Biomacromolecules 6, 1062–1067 (2005)CrossRefGoogle Scholar
  31. 31.
    Bhattacharya, A., Kankanala, K., Pal, S., Mukherjee, A.K.: A nimesulide derivative with potential anti-inflammatory activity: Synthesis, X-ray powder structure analysis and DFT study. J. Mol. Struct. 975, 40–46 (2010)CrossRefGoogle Scholar
  32. 32.
    Singh, B.K., Tripathi, M., Pandey, P.K., Kakkar, P.: Nimesulide aggravates redox imbalance and calcium dependent mitochondrial permeability transition leading to dysfunction in vitro. Toxicology 275, 1–9 (2010)CrossRefGoogle Scholar
  33. 33.
    Piel, G., Pirotte, B., Delneuville, I., Neven, P., Llabres, G., Delarge, J., Delattr, L.: Study of the influence of both cyclodextrins and l-lysine on the aqueous solubility of nimesulide; isolation and characterization of nimesulide–l-lysine–cyclodextrin complexes. J. Pharm. Sci. 86, 475–480 (1997)CrossRefGoogle Scholar
  34. 34.
    Joudieh, S., Lahiani-Skiba, M., Bon, P., Ba, O., Le Bretonb, J.M., Skiba, M.: Nimesulide apparent solubility enhancement with natural cyclodextrins and their polymers. Lett. Drug Des. Discov. 5, 406–415 (2008)CrossRefGoogle Scholar
  35. 35.
    Agrawal, S., Pancholi, S.S., Jain, N.K., Agrawal, G.P.: Hydrotropic solubilization of nimesulide for parenteral administration. Int. J. Pharm. 274, 149–155 (2004)CrossRefGoogle Scholar
  36. 36.
    Dutet, J., Lahiani-Skiba, M., Didier, L., Jezequel, S., Bounoure, F., Barbot, C., Arnaud, P., Skiba, M.: Nimesulide/cyclodextrin/PEG 6000 ternary complexes: Physico-chemical characterization, dissolution studies and bioavailability in rats. J. Inclusion Phenom. Macrocycl. Chem. 57, 203–209 (2007)CrossRefGoogle Scholar
  37. 37.
    Moneghini, M., Kikic, I., Perissutti, B., Franceschinis, E., Cortesi, A.: Characterisation of nimesulide–betacyclodextrins systems prepared by supercritical fluid impregnation. Eur. J. Pharm. Biopharm. 58, 637–644 (2004)CrossRefGoogle Scholar
  38. 38.
    Gaisford, S., Beezer, A.E., Mitchell, J.C.: Diode-array UV spectrometric evidence for cooperative interactions in binary mixtures of pluronics F77, F87, and F127. Langmuir 13, 2606–2607 (1997)CrossRefGoogle Scholar
  39. 39.
    Gaisford, S., Beezer, A.E., Mitchell, J.C., Loh, W., Finnie, J.K., Williams, S.J.: Diode array UV spectrometric evidence for a concentration dependent phase transition in dilute aqueous solutions of Pluronic F87 (Poloxamer 237). J. Chem. Soc. Chem. Commun. 18, 1843–1844 (1995)CrossRefGoogle Scholar
  40. 40.
    Alexandridis, P., Hatton, T.A.: Poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling. Colloids Surf. A Physicochem. Eng. Aspects 96, 1–46 (1995)CrossRefGoogle Scholar
  41. 41.
    Goldmints, I., von Gottberg, F.K., Smith, K.A., Hatton, T.A.: Small-angle neutron scattering study of PEO–PPO–PEO micelle structure in the unimer-to-micelle transition region. Langmuir 13, 3659–3664 (1997)CrossRefGoogle Scholar
  42. 42.
    Wanka, G., Hoffmann, H., Ulbricht, W.: Phase diagrams and aggregation behavior of poly(oxyethylene)–poly(oxypropylene)–poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27, 4145–4159 (1994)CrossRefGoogle Scholar
  43. 43.
    Almgren, M., Bahadur, P., Jansson, M., Li, P., Brown, W., Bahadur, A.: Static and dynamic properties of a (PEO–PPO–PEO) block copolymer in aqueous solution. J. Colloid Interf. Sci. 151, 157–165 (1992)CrossRefGoogle Scholar
  44. 44.
    Kositza, M.J., Bohne, C., Alexandridis, P., Hatton, T.A., Holzwarth, J.F.: Micellization dynamics and impurity solubilization of the block-copolymer L64 in an aqueous solution. Langmuir 15, 322–325 (1999)CrossRefGoogle Scholar
  45. 45.
    Kadam, Y., Ganguly, R., Kumbhakar, M., Aswal, V.K., Hassan, P.A., Bahadur, P.: Time dependent sphere-to-rod growth of the pluronic micelles: Investigating the role of core and corona solvation in determining the micellar growth rate. J. Phys. Chem. B 113, 16296–16302 (2009)CrossRefGoogle Scholar
  46. 46.
    Wai, Z., Hao, J., Yuan, S., Li, Y., Juan, W., Sha, X., Fang, X.: Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: Formulation, optimization and in vitro characterization. Int. J. Pharm. 376, 176–185 (2009)CrossRefGoogle Scholar
  47. 47.
    Alexandridis, P., Holzwarth, J.F., Hatton, T.A.: Micellization of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association. Macromolecules 27, 2414–2425 (1994)CrossRefGoogle Scholar
  48. 48.
    Ma, J., Guo, C., Tang, Y., Liu, H.: 1H NMR spectroscopic investigations on the micellization and gelation of PEO–PPO–PEO block copolymers in aqueous solutions. Langmuir 23, 9596–9605 (2007)CrossRefGoogle Scholar
  49. 49.
    Álvarez-Ramírez, J.G., Fernández, V.V.A., Macías, E.R., Rharbi, Y., Taboada, P., Gámez-Corrales, R., Puig, J.E., Soltero, J.F.A.: Phase behavior of the Pluronic P103/water system in the dilute and semi-dilute regimes. J. Colloid Interface Sci. 333, 655–662 (2009)CrossRefGoogle Scholar
  50. 50.
    Ganguly, R., Choudhury, N., Aswal, V.K., Hassan, P.A.: Pluronic L64 micelles near cloud point: Investigating the role of micellar growth and interaction in critical concentration fluctuation and percolation. J. Phys. Chem. B 113, 668–675 (2009)CrossRefGoogle Scholar
  51. 51.
    Chiappetta, D.A., Sosnik, A.: Poly(ethylene oxide)–poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm. 66, 303–317 (2007)CrossRefGoogle Scholar
  52. 52.
    Al-Saden, A.A., Whateley, T.L., Florence, A.T.: Poloxamer association in aqueous solution. J. Colloid Interface Sci. 90, 303–309 (1982)CrossRefGoogle Scholar
  53. 53.
    Mata, J.P., Majhi, P.R., Guo, C., Liu, H.Z., Bahadur, P.: Concentration, temperature, and salt–induced micellization of a triblock copolymer Pluronic L64 in aqueous media. J. Colloid Interface Sci. 292, 548–556 (2005)CrossRefGoogle Scholar
  54. 54.
    DeWaterbeemd, H., Lennernas, H., Artursson, P. (eds.): Drug Bioavailability. Estimation of Solubility, Permeability, Absorption and Bioavailability, Wiley, Weinheim (2003)Google Scholar
  55. 55.
    Bergstrom, C.A.S., Luthman, K., Artursson, P.: Accuracy of calculated pH-dependent aqueous drug solubility. Eur. J. Pharm. Sci. 22, 387–398 (2004)CrossRefGoogle Scholar
  56. 56.
    Gaucher, G., Satturwar, P., Jones, M., Furtos, A., Leroux, J.: Polymeric micelles for oral drug delivery. Eur. J. Pharma. Biopharm. 76, 147–158 (2010)CrossRefGoogle Scholar
  57. 57.
    Dellis, D., Giaginis, C., Kakoulidou, A.T.: Physicochemical profile of nimesulide: Exploring the interplay of lipophilicity, solubility and ionization. J. Pharm. Biomed. Anal. 44, 57–62 (2007)CrossRefGoogle Scholar
  58. 58.
    Desai, P.R., Jain, N.J., Sharma, R.K., Bahadur, P.: Effect of additives on the micellization of PEO/PPO/PEO block copolymer F127 in aqueous solution. Colloids Surf. A Physicochem. Eng. Aspects 178, 57–69 (2001)CrossRefGoogle Scholar
  59. 59.
    Alexdandridis, P., Olsson, U., Lindman, B.: A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 14, 2627–2638 (1998)CrossRefGoogle Scholar
  60. 60.
    Pandit, N., Trygstad, T., Croy, S., Bohorquez, M., Koch, C.: Effect of salts on the micellization, clouding, and solubilization behavior of Pluronic F127 solutions. J. Colloid Interface Sci. 222, 213–220 (2000)CrossRefGoogle Scholar
  61. 61.
    Momot, K.I., Kuchel, P.W., Chapman, B.E., Deo, P., Whittaker, D.: NMR study of the association of propofol with nonionic surfactants. Langmuir 19, 2088–2095 (2003)CrossRefGoogle Scholar
  62. 62.
    Hecht, E., Hoffmann, H.: Kinetic and calorimetric investigations on micelle formation of block copolymers of the poloxamer type. Colloids Surf. A Physicochem. Eng. Aspects 96, 181–197 (1995)CrossRefGoogle Scholar
  63. 63.
    Kadam, Y., Bharatiya, B., Hassan, P.A., Verma, G., Aswal, V.K., Bahadur, P.: Effect of an amphiphilic diol (Surfynol®) on the micellar characteristics of PEO–PPO–PEO block copolymers in aqueous solutions. Colloids Surf. A Physicochem. Eng. Aspects 363, 110–118 (2010)CrossRefGoogle Scholar
  64. 64.
    Suh, H., Jun, H.W.: Physicochemical and release studies of naproxen in poloxamer gels. Int. J. Pharm. 129, 13–20 (1996)CrossRefGoogle Scholar
  65. 65.
    Saito, Y., Kondo, Y., Abe, M., Sato, T.: Solubilization behavior of estriol in an aqueous solution of Pluronic L-64 as a function of concentration and temperature. Chem. Pharm. Bull. 42, 1348–1350 (1994)CrossRefGoogle Scholar
  66. 66.
    Saito, Y., Sato, T.: Effects of inorganic salts on solubilization of estriol in an aqueous solution of poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer. Drug Dev. Ind. Pharm. 24, 385–388 (1998)CrossRefGoogle Scholar
  67. 67.
    Su, Y.L., Wei, X.F., Liu, H.Z.: Effect of sodium chloride on association behavior of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) block copolymer in aqueous solutions. J. Colloid Interface Sci. 264, 526–531 (2003)CrossRefGoogle Scholar
  68. 68.
    Cheema, M.A., Taboada, P., Barbosa, S., Castro, E., Siddiq, M., Mosquera, V.: A comparative study of the thermodynamic properties at the air—water interface and in the bulk of structurally related phenothiazine drugs aqueous solutions. J. Chem. Thermodyn. 40, 298–308 (2008)CrossRefGoogle Scholar
  69. 69.
    Rosen, M.J.: Surfactant and Interfacial Phenomena, 3rd edn. Wiley, Hoboken (2004)CrossRefGoogle Scholar
  70. 70.
    Bhat, P.A., Rather, G.M., Dar, A.A.: Effect of surfactant mixing on partitioning of model hydrophobic drug, naproxen, between aqueous and micellar phases. J. Phys. Chem. B 113, 997–1006 (2009)CrossRefGoogle Scholar
  71. 71.
    Enache, M., Anghelache, I., Volanschi, E.: Coupled spectral and electrochemical evaluation of the anticancer drug mitoxantrone–sodium dodecyl sulfate interaction. Int. J. Pharm. 390, 100–106 (2010)CrossRefGoogle Scholar
  72. 72.
    Cudina, O., Rajic, K.K., Bugarcic, I.R., Jankovic, I.: Interaction of hydrochlorothiazide with cationic surfactant micelles of cetyltrimethylammonium bromide. Colloids Surf. A Physicochem. Eng. Aspects 256, 225–232 (2005)CrossRefGoogle Scholar
  73. 73.
    Liu, G.G., Roy, D., Rosen, M.J.: A simple method to estimate the surfactant micelle—water distribution coefficients of aromatic hydrocarbons. Langmuir 16, 3595–3605 (2000)CrossRefGoogle Scholar
  74. 74.
    Heindl, A., Strnad, J., Kohler, H–.H.: Effect of aromatic solubilizates on the shape of CTABr micelles. J. Phys. Chem. 97, 742–746 (1993)CrossRefGoogle Scholar
  75. 75.
    Siepmann, J., Peppas, N.A.: Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 48, 139–157 (2001)CrossRefGoogle Scholar
  76. 76.
    Xiong, X.Y., Tam, K.C., Gan, L.H.: Release kinetics of hydrophobic and hydrophilic model drugs from pluronic F127/poly(lactic acid) nanoparticles. J. Control Release 103, 73–82 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ChemistryVeer Narmad South Gujarat UniversitySuratIndia

Personalised recommendations