Journal of Solution Chemistry

, Volume 41, Issue 11, pp 1922–1936 | Cite as

The Hydrogen Perturbation in Molecular Connectivity Indices and their Application to a QSPR Study

  • Morteza Atabati
  • Reza Emamalizadeh


Although chemical graphs do not show the difference between various atoms and electron lone pairs, the use of pseudo-graphs is a remedy. Modified molecular connectivity indices (mMCIs) have been suggested as showing the role of hydrogen atoms that are also useful in distinguishing isomers. A new algorithm for the δ v number, the basic parameter of molecular connectivity indices (MCIs), has recently been proposed. This algorithm, which is centered on graph concepts such as complete graphs and general graphs, encodes the information of the bonded hydrogen atom on different atoms through a perturbation parameter that requires no new graph concepts. In this study, hydrogen perturbations in valence molecular connectivity indices were applied as structural descriptors for organic compounds in quantitative structure property relationship studies on the molar volume and molar refraction of liquid alkanes, alkenes and alcohols. The results show that, in most cases, these indices give improved correlations compared with the original MCIs.


Hydrogen perturbation QSPR Molecular connectivity indices Molar volume Molar refraction 


  1. 1.
    Kier, L.B., Hall, L.H.: Molecular Connectivity in Chemistry and Drug Research. Academic Press, New York (1976)Google Scholar
  2. 2.
    Kier, L.B., Hall, L.H.: Molecular Connectivity in Structure-Activity Analysis. Research Studies Press, Letchworth (1986)Google Scholar
  3. 3.
    Hosoya, H.: Topological nature of structure isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 44, 2332–2339 (1971)CrossRefGoogle Scholar
  4. 4.
    Balaban, A.T.: Highly discriminating distance-based topological index. Chem. Phys. Lett. 89, 399–404 (1982)CrossRefGoogle Scholar
  5. 5.
    Schultz, H.P.: Topological organic chemistry. 1. Graph theory and topological indices of alkanes. J. Chem. Inf. Comput. Sci. 29, 227–228 (1989)CrossRefGoogle Scholar
  6. 6.
    Wiener, H.: Structure determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)CrossRefGoogle Scholar
  7. 7.
    Kier, L.B., Hall, L.H.: Molecular Structure Description. The Electrotopological State. Academic Press, New York (1999)Google Scholar
  8. 8.
    Estrada, E., Rodríguez, L.: Edge-connectivity indices in QSPR/QSAR studies. 1. Comparison to other topological indices in QSPR studies. J. Chem. Inf. Comput. Sci. 39, 1037–1041 (1999)CrossRefGoogle Scholar
  9. 9.
    Pogliani, L.: Modeling with molecular pseudo connectivity descriptors. A useful extension of the intrinsic I-state concept. J. Phys. Chem. A 104, 9029–9045 (2000)CrossRefGoogle Scholar
  10. 10.
    Ivanciuc, O., Ivanciuc, T., Klein, D.J., Seitz, W.A., Balaban, A.T.: Wiener index extension by counting even/odd graph distances. J. Chem. Inf. Comput. Sci. 41, 536–549 (2001)CrossRefGoogle Scholar
  11. 11.
    Lucic, B., Lukovits, I., Nikolic, S., Trinajstic, N.: Distance-related indexes in the quantitative structure–properties relationship modeling. J. Chem. Inf. Comput. Sci. 41, 527–535 (2001)CrossRefGoogle Scholar
  12. 12.
    Randic, M.: The connectivity index 25 year after. J. Mol. Graph. Model. 20, 19–35 (2001)CrossRefGoogle Scholar
  13. 13.
    Randic, M., Pompe, M.: The variable molecular descriptors based on distance related matrices. J. Chem. Inf. Comput. Sci. 41, 575–581 (2001)CrossRefGoogle Scholar
  14. 14.
    Bonchev, D.: Overall connectivity: a next generation molecular connectivity. J. Mol. Graph. Model. 20, 65–75 (2001)CrossRefGoogle Scholar
  15. 15.
    Pogliani, L.: From molecular connectivity indices to semiempirical connectivity terms: recent trends in graph theoretical descriptors. Chem. Rev. 100, 3827–3858 (2000)CrossRefGoogle Scholar
  16. 16.
    Bicerano, J.: Prediction of Polymer Properties, 3rd edn. Marcel Dekker, New York (2002)CrossRefGoogle Scholar
  17. 17.
    Zhong, C., Yang, C.: Approach for the calculation of high-order connectivity indices of polymers and its application. J. Polym. Sci. Polym. Phys. 40, 401–407 (2002)CrossRefGoogle Scholar
  18. 18.
    Yang, C., Zhong, C.: Modified connectivity indices and their application to QSPR study. J. Chem. Inf. Comput. Sci. 43, 1998–2004 (2003)CrossRefGoogle Scholar
  19. 19.
    Domenech, R.G., Gálvez, J., Ortiz, J.V.J., Pogliani, L.: Some new trends in chemical graph theory. Chem. Rev. 108, 1127–1169 (2008)CrossRefGoogle Scholar
  20. 20.
    King, R.B., Rouvray, D.H.: Graph Theory and Topology in Chemistry. Elsevier, Amsterdam (1987)Google Scholar
  21. 21.
    Todeschini, R., Consonni, V.: The Handbook of Molecular Descriptors. Wiley, Weinheim (2000)CrossRefGoogle Scholar
  22. 22.
    Pilar, F.L.: Elementary Quantum Chemistry. McGraw-Hill, New York (1968)Google Scholar
  23. 23.
    Pogliani, L.: Encoding the core electrons with graph concepts. J. Chem. Inf. Comput. Sci. 44, 42–49 (2004)CrossRefGoogle Scholar
  24. 24.
    Pogliani, L.: Model of the physical properties of halides with complete graph-based indices. Int. J. Quantum Chem. 102, 38–52 (2005)CrossRefGoogle Scholar
  25. 25.
    Pogliani, L.: The hydrogen perturbation in molecular connectivity computations. J. Comput. Chem. 27, 868–882 (2006)CrossRefGoogle Scholar
  26. 26.
    Pogliani, L.: Core electrons and hydrogen atoms in chemical graph theory. J. Math. Chem. 43, 1233–1255 (2008)CrossRefGoogle Scholar
  27. 27.
    Pogliani, L.: Model of twelve properties of a set of organic solvents with graph-theoretical and/or experimental parameters. J. Comput. Chem. 31, 295–307 (2010)Google Scholar
  28. 28.
    Needham, D.E., Wei, I.C., Seybold, P.G.: Molecular modeling of the physical properties of the alkanes. J. Am. Chem. Soc. 110, 4186–4194 (1988)CrossRefGoogle Scholar
  29. 29.
    Nelson, S.D., Seybold, P.G.: Molecular structure–property relationships for alkenes. J. Mol. Graph. Model. 20, 36–53 (2001)CrossRefGoogle Scholar
  30. 30.
    Ren, B.Y.: Novel atom-type AI indices for QSPR studies of alcohols. Comput. Chem. 26, 223–235 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of ChemistryDamghan UniversityDamghanIran

Personalised recommendations