Advertisement

Journal of Solution Chemistry

, Volume 41, Issue 9, pp 1631–1648 | Cite as

Volumetric Properties of the Ternary System Dimethyl Carbonate + Butyl Methacrylate + Allyl Methacrylate and Its Binary Butyl Methacrylate + Allyl Methacrylate at 293.15 K and p=101.325 kPa

  • Jaime Wisniak
  • Gladis Cortez
  • René D. Peralta
  • Ramiro Infante
  • Luis E. Elizalde
  • Tláloc A. Amaro
  • Omar García
  • Homero Soto
Article

Abstract

Densities of the ternary system dimethyl carbonate + butyl methacrylate + allyl methacrylate and its binary subsystem butyl methacrylate + allyl methacrylate have been measured in the whole composition range, at 293.15 K and atmospheric pressure, using an Anton Paar DMA 5000 oscillating U-tube densimeter. The calculated excess molar volumes of the binary system are positive and were correlated with the Redlich–Kister equation and with a series of Legendre polynomials. Several models were used to correlate ternary behavior from the excess molar volume data of their constituent binaries and found to fit the data equally well. The best fit was based on a direct approach, without information on the component binary systems.

Keywords

Densities Excess molar volumes Dimethyl carbonate Methacrylates Ternary systems 

Glossary of Symbols

Δ123, cm3⋅mol−1

contribution of the ternary effect, Eqs. 1822

ρ, g⋅cm−3

densities

ϕV, cm3⋅mol−1

apparent molar volume, Eq. 5

A,…,G, cm3⋅mol−1

parameters of the Redlich–Kister equation for a ternary system, Eq. 20

Ai, cm3⋅mol−1

parameters of the Redlich–Kister equation for a binary system, Eq. 8

Aij,Bij,Cij, cm3⋅mol−1

parameters of Eq. 22

ai, cm3⋅mol−1

parameters of the Legendre equation, Eq. 10

Bi, atm−1

parameters of the Nagata model, Eq. 21

A,B,C, cm3⋅mol−1

parameters for the ternary effect, Eq. 19

d, Hz

Debye parameter

R, atm⋅cm−3⋅mol−1⋅K−1

universal gas constant, Eq. 22

s, cm3⋅mol−1

standard deviation, Eq. 12

V, cm3⋅mol−1

molar volume

\(V_{\mathrm{m}_{i}}^{0},\ \mbox{cm}^{3}{\cdot}\mbox{mol}^{-1}\)

molar volume of pure component

\(\bar{V}^{\infty}_{i},\ \mbox{cm}^{3}{\cdot}\mbox{mol}^{-1}\)

partial molar volumes at infinite dilution

\(V_{\mathrm{m}_{i}}^{\mathrm{E},\infty},\ \mbox{cm}^{3}{\cdot}\mbox{mol}^{-1}\)

partial excess molar volume at infinite dilution

VE, cm3⋅mol−1

excess molar volume

\(\bar{V}_{i},\ \mbox{cm}^{3}{\cdot}\mbox{mol}^{-1}\)

partial molar volume

xi

mole fraction

References

  1. 1.
    Peralta, R.D., Infante, R., Cortez, G., Villarreal, L., Wisniak, J.: Volumetric properties of cyclohexane with ethyl acrylate, butyl acrylate, methyl methacrylate and styrene at 298.15 K. Thermochim. Acta 390, 47–53 (2002) CrossRefGoogle Scholar
  2. 2.
    Peralta, R.D., Infante, R., Cortez, G., Torres-Lubián, J.R., Wisniak, J.: Volumetric properties of 1,2-dimethylbenzene + ethyl acrylate, butyl acrylate, methyl methacrylate and styrene at 298.15 K. Thermochim. Acta 402, 247–252 (2003) CrossRefGoogle Scholar
  3. 3.
    Peralta, R.D., Infante, R., Cortez, G., Cisneros, A., Wisniak, J.: Densities and excess volumes of benzene with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at T=298.15 K. Thermochim. Acta 398, 39–46 (2003) CrossRefGoogle Scholar
  4. 4.
    Peralta, R.D., Infante, R., Cortez, G., Rodríguez, O., Wisniak, J.: Volumetric properties of toluene with ethyl acrylate, butyl acrylate, methyl methacrylate and styrene at 25 °C. J. Solution Chem. 31, 175–186 (2002) CrossRefGoogle Scholar
  5. 5.
    Peralta, R.D., Infante, R., Cortez, G., López, R.G., Wisniak, J.: Volumetric properties of 1,1-dimethylethyl methyl ether with ethyl acrylate, butyl acrylate, methyl methacrylate and styrene at 298.15 K. J. Thermophys. 24, 173–183 (2003) CrossRefGoogle Scholar
  6. 6.
    Peralta, R.D., Infante, R., Cortez, G., Ramírez, R.R., Wisniak, J.: Densities and excess volumes of binary mixtures of 1,4-dioxane with either ethyl acrylate, or butyl acrylate, or methyl methacrylate, or styrene at T=298.15 K. J. Chem. Thermodyn. 35, 23–250 (2003) CrossRefGoogle Scholar
  7. 7.
    Peralta, R.D., Infante, R., Cortez, G., Ramos, L.F., Wisniak, J.: Excess molar volumes of tetrahydrofuran with ethyl acrylate, butyl acrylate, methyl methacrylate and styrene at 298.15 K. Phys. Chem. Liq. 41, 361–369 (2003) CrossRefGoogle Scholar
  8. 8.
    Tundo, P., Selva, M.: The chemistry of dimethyl carbonate. Acc. Chem. Res. 35, 706–716 (2002) CrossRefGoogle Scholar
  9. 9.
    Wisniak, J., Cortez, G., Peralta, R.D., Infante, R., Elizalde, L.E., Amaro, T.A., García, O., Soto, H.: Density, excess volume, and excess coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate at T=(293.15,303.15, and 313.15) K. J. Chem. Thermodyn. 40, 1671–1683 (2008) CrossRefGoogle Scholar
  10. 10.
    Van Ness, H.C., Abbott, M.M.: Classical Thermodynamics of Nonelectrolyte Solutions. McGraw-Hill, New York (1982) Google Scholar
  11. 11.
    Glasstone, S.: Textbook of Physical Chemistry. Van Nostrand, New York (1946) Google Scholar
  12. 12.
    Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948) CrossRefGoogle Scholar
  13. 13.
    Wisniak, J., Polishuk, A.: Analysis of residuals—a useful tool for phase equilibrium data analysis. Fluid Phase Equilib. 164, 61–82 (1999) CrossRefGoogle Scholar
  14. 14.
    Cibulka, I.: Estimation of excess volume and density of ternary liquid mixtures of nonelectrolytes from binary data. Collect. Czechoslov. Chem. Commun. 47, 1414–1419 (1982) CrossRefGoogle Scholar
  15. 15.
    Singh, P.P., Nigam, R.K., Sharma, S.O., Aggarwal, S.: Molar excess volumes of ternary mixtures of nonelectrolytes. Fluid Phase Equilib. 18, 333–344 (1984) CrossRefGoogle Scholar
  16. 16.
    Nagata, I., Tamura, K.: Excess molar enthalpies of {methanol or ethanol + (2-butanone + benzene)} at 298.15 K. J. Chem. Thermodyn. 22, 279–283 (1990) CrossRefGoogle Scholar
  17. 17.
    Tamir, A.: Correlation of vapor–liquid equilibria in systems showing homoazeotropy or heteroazeotropy using expressions for the total pressure and temperature as direct functions of vapor composition. Chem. Eng. Sci. 36, 1467–1473 (1981) CrossRefGoogle Scholar
  18. 18.
    Pardo, J.M., Tovar, C.A., Troncoso, J., Carballo, E., Romani, L.: Thermodynamic behaviour of the binary systems dimethyl carbonate + n-octane or n-nonane. Thermochim. Acta 433, 128–133 (2005) CrossRefGoogle Scholar
  19. 19.
    Romano, E., Trenzado, J.L., González, E., Matos, J.S., Segade, L., Jiménez, E.: Thermophysical properties of four binary dimethyl carbonate + 1-alcohol systems at 288.15–313.15 K. Fluid Phase Equilib. 211, 219–240 (2003) CrossRefGoogle Scholar
  20. 20.
    Rivas, M.A., Pereiros, S.M., Banerji, N., Iglesias, T.I.: Permittivity and density of binary systems of {dimethyl or diethyl carbonate} + n-dodecane from T (288.15 to 328.15) K. J. Chem. Thermodyn. 36, 183–191 (2004) CrossRefGoogle Scholar
  21. 21.
    Pereiro, S.M., Rodríguez, A., Canosa, J., Tojo, J.: Density, viscosity, and speed of sound of dimethyl carbonate with cyclopentane and methyl cyclohexane at several temperatures. J. Chem. Eng. Data 49, 1392–1399 (2004) CrossRefGoogle Scholar
  22. 22.
    Rodríguez, A., Canosa, J., Tojo, J.: Properties of binary mixtures (dimethyl carbonate + alcohols) at several temperatures. J. Chem. Eng. Data 46, 1476–1486 (2001) CrossRefGoogle Scholar
  23. 23.
    TRC Thermodynamic Tables—Hydrocarbons. Thermodynamics Research, Center, The Texas A&M University System, College Station, Texas, extant (2008). Table db-3220-0, October 31, 2000 Google Scholar
  24. 24.
    DIPPR 801 Database, Properties for Industrial Process Design. Design Institute for Physical Properties (DIPPR), American Institute of Chemical Engineers, New York, extant (2008) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jaime Wisniak
    • 1
  • Gladis Cortez
    • 2
  • René D. Peralta
    • 2
  • Ramiro Infante
    • 2
  • Luis E. Elizalde
    • 2
  • Tláloc A. Amaro
    • 3
  • Omar García
    • 3
  • Homero Soto
    • 3
  1. 1.Department of Chemical EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Centro de Investigación en Química AplicadaSaltilloMexico
  3. 3.Facultad de Ciencias QuímicasUniversidad Autónoma de CoahuilaSaltilloMexico

Personalised recommendations