Journal of Solution Chemistry

, Volume 41, Issue 9, pp 1610–1630 | Cite as

COSMO-RS Based Predictions for the Extraction of Lignin from Lignocellulosic Biomass Using Ionic Liquids: Effect of Cation and Anion Combination

  • Chilukoti Balaji
  • Tamal Banerjee
  • Vaibhav V. Goud


A total of 34 cations belonging to 6 classes and 34 anions resulting in 1156 possible combinations are screened using the quantum chemical based COSMO-RS (COnductor-like Screening MOdel for Real Solvents) model. The Hildebrand solubility parameter (δ H) is calculated using the predicted infinite dilution activity coefficient (γ ) of lignin in ionic liquids at 303.15 K. Initial benchmarking is performed by predicting the Hildebrand solubility parameter of lignin in ionic liquids. Comparison with literature values involving 12 ILs gives the average root mean square deviation (RMS) as 10.15 %. Except for anions based on hexafluorophosphate [PF6], bis(oxalato(2)borate) [BOB], tetracyanoborate [B(CN)4] and bis(trifluoromethylsulfonyl)amide [BTA], all the cation–anion combinations have calculated solubility parameters equal to that of lignin at 303.15 K, indicating high solubilities for lignin.


Biomass Ionic liquids COSMO-RS Solubility 


  1. 1.
    Chen, W.H., Pen, B.L., Yu, C.T., Hwang, W.S.: Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresour. Technol. 102, 2916–2924 (2011) CrossRefGoogle Scholar
  2. 2.
    Zhang, Z., Zhao, Z.K.: Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour. Technol. 101, 1111–1114 (2010) CrossRefGoogle Scholar
  3. 3.
    Heinze, T., Liebert, T.: Unconventional methods in cellulose functionalization. Prog. Polym. Sci. 26, 1689–1762 (2001) CrossRefGoogle Scholar
  4. 4.
    Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulose biomass. Bioresour. Technol. 100, 10–18 (2009) CrossRefGoogle Scholar
  5. 5.
    Grabber, J.H.: How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci. 45, 820–831 (2005) CrossRefGoogle Scholar
  6. 6.
    Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S.: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577 (2002) CrossRefGoogle Scholar
  7. 7.
    Chandra, R.P., Bura, R., Mabee, W.E., Berlin, A., Pan, X., Saddler, J.N.: Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics. Adv. Biochem. Eng. Biotechnol. 108, 67–93 (2007) Google Scholar
  8. 8.
    Liu, H., Sale, K.L., Holmes, B.M., Simmons, B.A., Singh, S.: Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J. Phys. Chem. B 114, 4293–4301 (2010) CrossRefGoogle Scholar
  9. 9.
    Quijano, G., Couvert, A., Amrane, A.: Ionic liquids: applications and future trends in bioreactor technology. Bioresour. Technol. 101, 8923–8930 (2010) CrossRefGoogle Scholar
  10. 10.
    Yang, Z., Pan, W.: Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microb. Technol. 37, 19–28 (2005) CrossRefGoogle Scholar
  11. 11.
    Kahlen, J., Masuch, K., Leonhard, K.: Modelling cellulose solubilities in ionic liquids using COSMO-RS. Green Chem. 12, 2172–2181 (2010) CrossRefGoogle Scholar
  12. 12.
    Maginn, E.: Atomistic simulation of the thermodynamic and transport properties of ionic liquids. Acc. Chem. Res. 40, 1200–1207 (2007) CrossRefGoogle Scholar
  13. 13.
    Heintz, A., Kulikov, D.V., Verevkin, S.P.: Thermodynamic properties of mixtures containing ionic liquids. 1. Activity coefficients at infinite dilution of alkanes, alkenes, and alkylbenzenes in 4-methyl- n-butylpyridinium tetrafluoroborate using gas liquid chromatography. J. Chem. Eng. Data 46, 1526–1529 (2001) CrossRefGoogle Scholar
  14. 14.
    Alevizou, E.I., Pappa, G.D., Voutsas, E.C.: Prediction of phase equilibrium in mixtures containing ionic liquids using UNIFAC. Fluid Phase Equilib. 284, 99–105 (2009) CrossRefGoogle Scholar
  15. 15.
    Anantharaj, R., Banerjee, T.: COSMO-RS based predictions for the desulphurization of diesel oil using ionic liquids: effect of cation and anion combination. Fuel Process. Technol. 92, 39–52 (2010) CrossRefGoogle Scholar
  16. 16.
    Diedenhofen, M., Klamt, A.: COSMO-RS as a tool for property prediction of IL mixtures-a review. Fluid Phase Equilib. 294, 31–38 (2010) CrossRefGoogle Scholar
  17. 17.
    Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Ding, Y., Wu, G.: Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 8, 325–327 (2006) CrossRefGoogle Scholar
  18. 18.
    Lee, S.H., Doherty, T.V., Linhardt, R.J., Dordick, J.S.: Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng. 102, 1368–1376 (2008) CrossRefGoogle Scholar
  19. 19.
    Marciniak, A.: The solubility parameters of ionic liquids. Int. J. Mol. Sci. 11, 1973–1990 (2010) CrossRefGoogle Scholar
  20. 20.
    Anantharaj, R., Banerjee, T.: COSMO-RS based screening of ionic liquids as green solvents in denitrification studies. Ind. Eng. Chem. Res. 49, 8705–8725 (2010) CrossRefGoogle Scholar
  21. 21.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03 Revision B.02. Pittsburgh, PA (2003) Google Scholar
  22. 22.
    Perdew, J.P.: Density functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824 (1986) CrossRefGoogle Scholar
  23. 23.
    Schafer, A., Huber, C., Ahlrichs, R.: Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994) CrossRefGoogle Scholar
  24. 24.
    Toghiani, R.K., Toghiani, H., Maloney, S.W., Boddu, V.M.: Prediction of physicochemical properties of energetic materials. Fluid Phase Equilib. 264, 86–92 (2008) CrossRefGoogle Scholar
  25. 25.
    Sosa, C., Andzelm, J., Elkin, B.C., Wimmer, E., Dobbs, K.D., Dixon, D.A.: A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. J. Phys. Chem. 96, 6630–6636 (1992) CrossRefGoogle Scholar
  26. 26.
    Barone, V., Cossi, M.: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998) CrossRefGoogle Scholar
  27. 27.
    Klamt, A., Eckert, F.: COSMO-RS: a novel and efficient method for the a priori prediction of thermo physical data of liquids. Fluid Phase Equilib. 172, 43–72 (2000) CrossRefGoogle Scholar
  28. 28.
    Banerjee, T., Sahoo, R.K., Rath, S.S., Kumar, R., Khanna, A.: Multicomponent liquid–liquid equilibria prediction for aromatic extraction systems using COSMO-RS. Ind. Eng. Chem. Res. 46, 1292–1304 (2007) CrossRefGoogle Scholar
  29. 29.
    Banerjee, T., Verma, K.K., Khanna, A.: Liquid–liquid equilibrium for ionic liquid systems using COSMO-RS: effect of cation and anion dissociation. AIChE J. 54, 1874–1885 (2008) CrossRefGoogle Scholar
  30. 30.
    Banerjee, T., Singh, M.K., Khanna, A.: Prediction of binary VLE for imidazolium based ionic liquid systems using COSMO-RS. Ind. Eng. Chem. Res. 45, 3207–3219 (2006) CrossRefGoogle Scholar
  31. 31.
    Banerjee, T., Khanna, A.: Infinite dilution activity coefficients for trihexyltetradecyl phosphonium ionic liquids: measurements and COSMO-RS prediction. J. Chem. Eng. Data 51, 2170–2177 (2006) CrossRefGoogle Scholar
  32. 32.
    Zhao, J., Wilkins, R.M.: Controlled release of a herbicide from matrix granules based on solvent-fractionated organosolv lignins. J. Agric. Food Chem. 48, 3651–3661 (2000) CrossRefGoogle Scholar
  33. 33.
    Lee, S.H., Lee, S.B.: The Hildebrand solubility parameters, cohesive energy densities and internal energies of 1-alkyl-3-methylimidazolium-based room temperature ionic liquids. Chem. Commun., 3469–3471 (2005) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Chilukoti Balaji
    • 1
  • Tamal Banerjee
    • 1
  • Vaibhav V. Goud
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations