Skip to main content
Log in

Correlation of the Extraction Constant Values of Zn2+ and Cd2+ from Phosphoric Acid Media by Bis(2,4,4-trimethylpentyl)dithiophosphinic Acid Dissolved in Toluene

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Values of the extraction constants of Zn2+ and Cd2+ from aqueous phosphoric acid solutions (0.36 to 7.31 mol⋅L−1) by Cyanex 301 in toluene, involving formation of the complexes ZnR2 and CdR2 with R being bis(2,4,4-trimethylpentyl)dithiophosphinate, have been correlated at T=298 K as a function of the ionic strength. For this purpose the activity coefficients of all of the aqueous species have been calculated taking into account both the protolytic equilibria of concentrated phosphoric acid and complexation reactions between the cations and the phosphoric acid species. Good correlations have been obtained for the extraction constant values with the ionic strength, provided the release of water molecules during the extraction processes is considered. Finally, extraction constant values are reported at infinite dilution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HR:

Bis(2,4,4-trimethylpentyl)dithiophosphinic acid

M:

Cd or Zn

β 1 :

Stoichiometric equilibrium constant for the formation of the complex M(H2PO4)+

\(\beta_{1}^{0}\) :

Infinite dilution equilibrium constant for the formation of the complex M(H2PO4)+

β 2 :

Stoichiometric equilibrium constant for the formation of the complex M(H2PO4)2

\(\beta_{2}^{0}\) :

Infinite dilution equilibrium constant for the formation of the complex M(H2PO4)2

\(k_{\mathrm{ex}}'\) :

Conditional equilibrium constant for the extraction of MR2 from phosphoric acid solutions

k ex :

Stoichiometric equilibrium constant for the extraction of MR2 from phosphoric acid solutions

\(K_{\mathrm{ex}}^{0}\) :

Infinite dilution equilibrium constant for the extraction of MR2 from phosphoric acid solutions

γ :

Activity coefficient (molal scale)

α M :

Side reaction coefficient of cadmium or zinc

n :

Average number of water molecules

a w :

Water activity

I :

Ionic strength (mol⋅kg−1)

References

  1. Coello, J., Madariaga, J.M., Muhammed, M., Valiente, M., Iturriaga, H.: On the extraction with long-chain amines—XXXVI. Extraction of copper(II) from chloride media. Polyhedron 5, 1845–1851 (1986)

    Article  CAS  Google Scholar 

  2. Bromley, L.A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313–320 (1973)

    Article  CAS  Google Scholar 

  3. Ciavatta, L.: The specific interaction theory in evaluating ionic equilibria. Ann. Chim. (Rome) 70, 551–562 (1980)

    CAS  Google Scholar 

  4. Tanaka, M.: Modelling of solvent extraction equilibria of Cu(II) from nitric and hydrochloric acid solutions with β-hydroxyoxime. Hydrometallurgy 24, 317–331 (1990)

    Article  CAS  Google Scholar 

  5. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  6. Cognet, M.C., Renon, H.: Influence of aqueous phase composition under copper extraction by cationic extractants: a thermodynamic interpretation. Hydrometallurgy 2, 305–314 (1977)

    Article  CAS  Google Scholar 

  7. Kyuchoukov, G., Bogacki, M.B., Szymanowski, J.: Copper extraction from ammoniacal solutions with LIX 84 and LIX 54. Ind. Eng. Chem. Res. 37, 4084–4089 (1998)

    Article  CAS  Google Scholar 

  8. Deep, A., Correia, P.F.M., de Carvalho, J.M.R.: Liquid–liquid extraction and separation of a macro concentration of Fe3+. Ind. Eng. Chem. Res. 46, 5707–5714 (2007)

    Article  CAS  Google Scholar 

  9. Judin, V.P., Bautista, R.G.: Extraction equilibria in the system GaCl3–AlCl3–HCl–H2O–tributylphosphate. Metall. Trans. B 17B, 259–265 (1986)

    Article  CAS  Google Scholar 

  10. Hughes, M.A., Sungshou, H.: Equilibria in the system cobalt/di-2-ethylhexylphosphoric acid/water. J. Chem. Eng. Data 31, 4–11 (1986)

    Article  CAS  Google Scholar 

  11. Stenström, S., Wingefors, S., Aly, G.: Solvent extraction of phosphoric acid with long chain tertiary amines. Solvent Extr. Ion Exch. 4(5), 883–905 (1986)

    Article  Google Scholar 

  12. Stenström, S.: Extraction of cadmium from phosphoric acid solutions with amines. Part III. A thermodynamic extraction model. Hydrometallurgy 18, 1–20 (1987)

    Article  Google Scholar 

  13. Rickelton, W.A.: Novel uses for thiophosphinic acids in solvent extraction. J. Miner. Met. Mater. Soc. 44, 52–54 (1992)

    Article  CAS  Google Scholar 

  14. Almela, A., Elizalde, M.P., Gómez, J.M.: Cadmium(II) extraction from phosphoric media by bis(2,4,4-trimethylpentyl)thiophosphinic acid (Cyanex 302). Fluid Phase Equilib. 145, 301–310 (1998)

    Article  CAS  Google Scholar 

  15. Almela, A., Elizalde, M.P.: Correlation of the extraction constants of the system Cd(II)–H3PO4/Cyanex 302–kerosene at different ionic strengths. Fluid Phase Equilib. 153, 243–249 (1998)

    Article  CAS  Google Scholar 

  16. Menoyo, B., Elizalde, M.P., Almela, A.: Extraction of lead by Cyanex 302 from phosphoric acid media. Solvent Extr. Ion Exch. 19, 677–698 (2001)

    Article  CAS  Google Scholar 

  17. Menoyo, B., Elizalde, M.P.: Extraction of lead(II) by Cyanex 302 and Cyanex 301 from 2.19 M phosphoric acid medium. In: Proceedings of ISEC 99, Barcelona, Spain, pp. 1227–1232 (1999)

    Google Scholar 

  18. Ocio, A., Elizalde, M.P.: Zinc(II) extraction from phosphoric media by bis(2,4,4-trimethylpentyl)dithiophosphinic acid (CYANEX 301). Solvent Extr. Ion Exch. 21, 259–271 (2003)

    Article  CAS  Google Scholar 

  19. Ocio, A., Almela, A., Elizalde, M.P.: Cadmium(II) extraction from phosphoric media by bis(2,4,4-trimethylpentyl)dithiophosphinic acid (CYANEX 301). Solvent Extr. Ion Exch. 22, 961–977 (2004)

    Article  CAS  Google Scholar 

  20. Ocio, A., Elizalde, M.P.: Correlation of the extraction constant values of Cu(II) by 5-dodecylsalicylaldoxime from phosphoric acid media. Fluid Phase Equilib. 284, 144–149 (2009)

    Article  CAS  Google Scholar 

  21. Elmore, K.L., Hatfield, J.D., Dunn, R.L., Jones, A.D.: Dissociation of phosphoric acid solutions at 25 °C. J. Phys. Chem. 69, 3520–3525 (1965)

    Article  CAS  Google Scholar 

  22. Childs, C.W.: A potentiometric study of equilibria in aqueous divalent metal orthophosphate solutions. Inorg. Chem. 9, 2465–2469 (1970)

    Article  CAS  Google Scholar 

  23. Iuliano, M.: Complexation equilibria in zinc(II) orthophosphate solutions. Ann. Chim. (Rome) 84, 187–209 (1994)

    CAS  Google Scholar 

  24. Hietanen, S., Sillén, L.G., Högfeldt, E.: On some phosphate equilibria. IV. The system cadmium–phosphoric acid in 3 M NaClO4 and 1, 2 and 3 M NaH2PO4 self-medium. Chem. Scr. 3, 65–72 (1973)

    CAS  Google Scholar 

  25. Ramamoorthy, S., Manning, G.: Equilibrium studies of metal–ion complexes of interest to natural waters. VIII: Fulvate–phosphate, fulvate–NTA and NTA–phosphate complexes of Pb2+, Cd2+ and Zn2+. J. Inorg. Nucl. Chem. 36, 695–698 (1974)

    Article  CAS  Google Scholar 

  26. Stas, J., Pareau, D., Chesne, A., Durand, G.: Extraction du cadmium par l’acide bis-2-ethylhexylphosphorique et etude de sa complexation par les ions phosphate. Bull. Soc. Chim. Fr. 127, 360–366 (1990)

    Google Scholar 

  27. Iuliano, M., Porto, R.: Complex formation equilibria between cadmium(II) and orthophosphate ions. Ann. Chim. (Rome) 84, 211–233 (1994)

    CAS  Google Scholar 

  28. Elyayaoui, A., Boulhassa, S., Guillaumont, R.: Complexes of cadmium with phosphoric acid. J. Radioanal. Nucl. Chem. 142, 403–415 (1990)

    Article  CAS  Google Scholar 

  29. Borge, G., Etxebarria, N., Fernández, L.A., Olazabal, M.A., Madariaga, J.M.: Development of a modified Bomley’s methodology (MBM) for the estimation of ionic media effects on solution equilibria. Part 2. Correlation of the molar and molal interaction parameters with the charge and crystal radii of the ions. Fluid Phase Equilib. 121, 99–109 (1996)

    Article  CAS  Google Scholar 

  30. Davies, C.W.: The extent of dissociation of salts in water. Part VIII. An equation for the mean ionic activity coefficient of an electrolyte in water, and a revision of the dissociation constants of some sulphates. J. Chem. Soc., 2093–2098 (1938)

  31. Christensen, J.H., Reed, R.B.: Design and analysis data. Density of aqueous solutions of phosphoric acid measurements at 25 °C. Ind. Eng. Chem. 47, 1277–1280 (1955)

    Article  CAS  Google Scholar 

  32. Touati, M., Benna-Zayani, M., Kbir-Ariguib, N., Trabelsi-Ayadi, M., Buch, A., Grossiord, J.L., Pareau, D., Stambouli, M.: Extraction of cadmium from phosphoric acid media by di(2-ethylhexyl)dithiophosphoric acid. Solvent Extr. Ion Exch. 26, 420–434 (2008)

    Article  CAS  Google Scholar 

  33. Hogfeldt, E.: Some aspects on amine extraction. In: Markus, Y., Kertes, A.S. (eds.) Solvent Extraction Research, pp. 157–175. Wiley-Interscience, New York (1969)

    Google Scholar 

  34. Elmore, K.L., Mason, C.M., Christensen, J.M.: Activity of orthophosphoric acid in aqueous solution at 25° from vapour pressure measurements. J. Am. Chem. Soc. 68, 2528–2532 (1946)

    Article  CAS  Google Scholar 

  35. Bol, W., Gerrits, G.J.A., van Panthaleon Eck, C.L.: The hydration of divalent cations in aqueous solution. An X-ray investigation with isomorphous replacement. J. Appl. Crystallogr. 3, 486–492 (1970)

    Article  CAS  Google Scholar 

  36. Dagnall, S.P., Hague, D.N., Towl, A.D.C.: X-ray diffraction study of aqueous zinc(II) nitrate. J. Chem. Soc., Faraday Trans. 78, 2161–2167 (1982)

    Article  CAS  Google Scholar 

  37. Muñoz-Páez, A., Díaz, S., Pérez, P.J., Martín-Zamora, M.E., Martínez, J.M., Pappalardo, R.R., Sánchez Marcos, E.: EXAFS investigation of the second hydration shell of metal cations in dilute aqueous solutions. Phys., B Condens. Matter 208 & 209, 395–397 (1995)

    Article  Google Scholar 

  38. Muñoz-Páez, A., Pappalardo, R.R., Sánchez Marcos, E.: Determination of the second hydration shell of Cr3+ and Zn2+ in aqueous solutions by extended X-ray absorption fine structure. J. Am. Chem. Soc. 117, 11710–11720 (1995)

    Article  Google Scholar 

  39. Wolfram, W.R., Pye, C.C.: Raman spectroscopic measurements and ab initio molecular orbital studies of cadmium(II) hydration in aqueous solution. J. Phys. Chem., B 102, 3564–3573 (1998)

    Article  Google Scholar 

  40. Wolfram, W.R., Pye, C.C.: Zinc(II) hydration in aqueous solution: a Raman spectroscopic investigation and an ab-initio molecular orbital study of zinc(II) water clusters. J. Solution Chem. 28, 1045–1070 (1999)

    Article  Google Scholar 

  41. Wolfram, W.R., Pye, C.C.: Zinc(II) hydration in aqueous solution. A Raman spectroscopic investigation and an ab-initio molecular orbital study. Phys. Chem. Chem. Phys. 1, 4583–4593 (1999)

    Google Scholar 

  42. Pearson, R.G.: Hard and soft acid and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Elizalde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocio, A., Elizalde, M.P. & Aparicio, J.L. Correlation of the Extraction Constant Values of Zn2+ and Cd2+ from Phosphoric Acid Media by Bis(2,4,4-trimethylpentyl)dithiophosphinic Acid Dissolved in Toluene. J Solution Chem 41, 994–1007 (2012). https://doi.org/10.1007/s10953-012-9853-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9853-0

Keywords

Navigation