Journal of Solution Chemistry

, Volume 41, Issue 4, pp 646–679 | Cite as

Thermodynamic Analysis of Homologous α-Amino Acids in Aqueous Potassium Fluoride Solutions at Different Temperatures

  • K. Rajagopal
  • S. Edwin Gladson


Partial molal volumes (\(V_{\phi} ^{0}\)) and partial molal compressibilities (\(K_{\phi} ^{0}\)) for glycine, L-alanine, L-valine and L-leucine in aqueous potassium fluoride solutions (0.1 to 0.5 mol⋅kg−1) have been measured at T=(303.15,308.15,313.15 and 318.15) K from precise density and ultrasonic speed measurements. Using these data, Hepler coefficients (\(\partial^{2}V_{\phi} ^{0}/\partial T^{2}\)), transfer volumes (\(\Delta V_{\phi} ^{0}\)), transfer compressibilities (\(\Delta K_{\phi} ^{0}\)) and hydration number (n H) have been calculated. Pair and triplet interaction coefficients have been obtained from the transfer parameters. The values of \(V_{\phi} ^{0}\) and \(K_{\phi} ^{0}\) vary linearly with increasing number of carbon atoms in the alkyl chain of the amino acids. The contributions of charged end groups (\(\mathrm{NH}_{3}^{+}\), COO), CH2 group and other alkyl chains of the amino acids have also been estimated. The results are discussed in terms of the solute–cosolute interactions and the dehydration effect of potassium fluoride on the amino acids.


Amino acid Aqueous potassium fluoride solution Partial molal volume Partial molal compressibility 



The authors acknowledge the reviewer and the editor for their valuable suggestions that helped us to improve the quality of our manuscript.


  1. 1.
    Kirkwood, J.G.: Theoretical studies upon dipolar ions. Chem. Rev. 24, 233–251 (1939) CrossRefGoogle Scholar
  2. 2.
    Lin, G., Bian, P., Lin, R.: The limiting partial molar volume and transfer partial molar volume of glycylglycine in aqueous sodium halide solutions at 298.15 K and 308.15 K. J. Chem. Thermodyn. 38, 144–151 (2006) CrossRefGoogle Scholar
  3. 3.
    Badarayani, R., Kumar, A.: Ionic interactions from volumetric investigations of L-alanine in NaBr, KCl, KBr and MgCl2 up to high concentrations. Fluid Phase Equilib. 201, 321–333 (2002) CrossRefGoogle Scholar
  4. 4.
    Shen, J.L., Li, Z.F., Wang, B.H., Zhang, Y.M.: Partial molar volumes of some amino acids and a peptide in water, DMSO, NaCl, and DMSO/NaCl aqueous solutions. J. Chem. Thermodyn. 32, 805–819 (2000) CrossRefGoogle Scholar
  5. 5.
    Bhat, R., Ahluwalia, J.C.: Partial molar heat capacities and volumes of transfer of some amino acids and peptides from water to aqueous sodium chloride solutions at 298.15 K. J. Phys. Chem. 89, 1099–1105 (1985) CrossRefGoogle Scholar
  6. 6.
    Badarayani, R., Kumar, A.: Densities and speed of sound of glycine in concentrated aqueous NaBr, KCl, KBr and MgCl2 at T=298.15 K. J. Chem. Thermodyn. 35, 897–908 (2003) CrossRefGoogle Scholar
  7. 7.
    Lilley, T.H., Tasker, I.R.: Aqueous solutions containing amino acids and peptides Part 12. Enthalpy of interactions of α-alanine, α-aminobutyric, norvaline and norleucine with sodium chloride at 298.15 K. J. Chem. Soc. Faraday Trans. I 78, 1–6 (1982) CrossRefGoogle Scholar
  8. 8.
    Palecz, B.: Thermochemical properties of L-α-amino acids in electrolyte water mixtures. Fluid Phase Equilib. 167, 253–261 (2000) CrossRefGoogle Scholar
  9. 9.
    Owaga, T., Mizutani, K., Yasuda, M.: The volume, adiabatic compressibility and viscosity of amino acids in aqueous alkali chloride solutions. Bull. Chem. Soc. Jpn. 57, 2064–2068 (1984) CrossRefGoogle Scholar
  10. 10.
    Basumallick, I.N., Mohanty, R.K., Chakraborty, U.: Volumetric and solvation behavior of amino acids in some aqueous binaries: Part I. Glycine, DL-alanine and DL-α-aminobutyric acid in aqueous solutions of strong electrolytes. Indian J. Chem. A 25, 1089–1091 (1986) Google Scholar
  11. 11.
    Yang, H., Zhao, J., Dai, M.: A study on volumetric properties of the amino acid in water or in aqueous potassium chloride. Acta Chimi. Sin. 51, 112–118 (1993) Google Scholar
  12. 12.
    Wadi, R.K., Ramasami, R.: Partial molar volumes and adiabatic compressibilities of transfer of glycine and DL-alanine from water to aqueous sodium sulfate at 288.15, 298.15 and 308.15 K. J. Chem. Soc. Faraday Trans. 93, 243–247 (1997) CrossRefGoogle Scholar
  13. 13.
    Soto, A., Arce, A., Khoshkbarchi, M.K.: Experimental data and modelling of apparent molar volumes, isentropic compressibilities and refractive indices in aqueous solutions of glycine + NaCl. Biophys. Chem. 74, 165–173 (1998) CrossRefGoogle Scholar
  14. 14.
    Wadi, R.K., Goyal, R.K.: Densities, viscosities and application of transition-state theory for water + potassium thiocynate + amino acid solutions at 288.15–308.15 K. J. Chem. Eng. Data 37, 377–386 (1992) CrossRefGoogle Scholar
  15. 15.
    Wadi, R.K., Goyal, R.K.: Temperature dependence of apparent molar volume and viscosity coefficients of amino acids in aqueous potassium thiocyanate solutions from 15 °C to 35 °C. J. Solution Chem. 21, 163–170 (1992) CrossRefGoogle Scholar
  16. 16.
    Yan, Z., Wang, J., Kong, W., Lu, J.: Effect of temperature on volumetric and viscosity properties of some α-amino acids in aqueous calcium chloride solutions. Fluid Phase Equlib. 215, 143–150 (2004) CrossRefGoogle Scholar
  17. 17.
    Banipal, T.S., Kaur, D., Banipal, P.K.: Effect of magnesium acetate on the volumetric and transport behaviour of some amino acids in aqueous solutions at 298.15 K. J. Chem. Thermodyn. 38, 1214–1226 (2006) CrossRefGoogle Scholar
  18. 18.
    Likhodi, O., Chalikian, T.V.: Partial molar volumes and adiabatic compressibilities of a series of aliphatic amino acids and oligoglycines in D2O. J. Am. Chem. Soc. 121, 1156–1163 (1999) CrossRefGoogle Scholar
  19. 19.
    Zamyatnin, A.A.: Amino acid, peptide, and protein volume in solution. Annu. Rev. Biophys. Bioeng. 13, 145–165 (1984) CrossRefGoogle Scholar
  20. 20.
    Chalikian, T.V., Sarvazyan, A.P., Breslauer, K.J.: Hydration and partial compressibility of biological compounds. J. Biophys. Chem. 51, 89–109 (1994) CrossRefGoogle Scholar
  21. 21.
    Baldwin, R.L.: How Hofmeister ion interactions affect protein stability. Biophys. J. 71, 2056–2063 (1996) CrossRefGoogle Scholar
  22. 22.
    Zhao, H.: Effect of ions and other compatible solutes on enzyme activity and its implication for biocatalysis using ionic liquids. J. Mol. Catal., B Enzym. 37, 16–25 (2005) CrossRefGoogle Scholar
  23. 23.
    Rajagopal, K., Jayabalakrishnan, S.S.: Volumetric and viscometric studies of 4-amino butyric acid in aqueous solution of salbutamol sulphate at 308.15 K, 313.15 K and 318.15 K. Chin. J. Chem. Eng. 17, 796–804 (2009) CrossRefGoogle Scholar
  24. 24.
    Rajagopal, K., Jayabalakrishnan, S.S.: Volumetric, ultrasonic speed and viscometric studies of salbutamol sulphate in aqueous methanol solution at different temperatures. J. Chem. Thermodyn. 42, 984–993 (2010) CrossRefGoogle Scholar
  25. 25.
    Rajagopal, K., Jayabalakrishnan, S.S.: Effect of temperature on volumetric and viscometric properties of homologous amino acids in aqueous solutions of metformin hydrochloride. Chin. J. Chem. Eng. 18, 425–445 (2010) CrossRefGoogle Scholar
  26. 26.
    Rajagopal, K., Edwin Gladson, S.: Viscometric, volumetric and acoustical studies of sodium carbonate in L-histidine water solution. J. Pure Appl. Ultrason. 28, 87–92 (2006) Google Scholar
  27. 27.
    Rajagopal, K., Edwin Gladson, S.: Partial molar volume and partial molar compressibility of four homologous α-amino acids in aqueous sodium fluoride solutions at different temperatures. J. Chem. Thermodyn. 43, 852–867 (2011) CrossRefGoogle Scholar
  28. 28.
    Iqbal, M.J., Chaudhry, M.A.: Volumetric and viscometric studies of salicyl amide, salicylic acid and acetyl salicylic acid in alcohols at different temperatures. J. Chem. Eng. Data 54, 1643–1646 (2009) CrossRefGoogle Scholar
  29. 29.
    Evaluation of measurement data—guide to the expression of uncertainty in measurement. Report of Working Group 1 of the Joint Committee for Guides in Metrology (2008) Google Scholar
  30. 30.
    Riyazuddeen, Bansal G.K.: Intermolecular/interionic interactions in L-leucine, L-asparagine-, and glycylglycine–aqueous electrolyte systems. Thermochim. Acta 445, 40–48 (2006) CrossRefGoogle Scholar
  31. 31.
    Wang, J., Yan, Z., Zhuo, K., Lu, J.: Partial molar volumes of some α-amino acids in aqueous sodium acetate solutions at 308.15 K. Biophys. Chem. 80, 179–188 (1999) CrossRefGoogle Scholar
  32. 32.
    Zhao, H.: Viscosity B-coefficients and standard partial molar volumes of amino acids, and their roles in interpreting the protein (enzyme) stabilization. Biophys. Chem. 122, 157–183 (2006) CrossRefGoogle Scholar
  33. 33.
    Pal, A., Kumar, S.: Volumetric and ultrasonic studies of some amino acids in binary aqueous solutions of MgCl2⋅6H2O at 298.15 K. J. Mol. Liq. 121, 148–155 (2005) CrossRefGoogle Scholar
  34. 34.
    Kharakoz, D.P.: Volumetric properties of proteins and their analogues in diluted water solutions. 2. Partial adiabatic compressibilities of amino acids at 15–70 °C. J. Phys. Chem. 95, 5634–5642 (1991) CrossRefGoogle Scholar
  35. 35.
    Kikuchi, M., Sakurai, M., Nitta, K.: Partial molar volumes and adiabatic compressibilities of amino acids in aqueous solutions at 5, 15, 25, 35, and 45 °C. J. Chem. Eng. Data 40, 935–942 (1995) CrossRefGoogle Scholar
  36. 36.
    Hepler, L.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969) CrossRefGoogle Scholar
  37. 37.
    Pal, A., Kumar, S.: Viscometric and volumetric studies of some amino acids in binary aqueous solutions of urea at various temperatures. J. Mol. Liq. 109, 23–31 (2004) CrossRefGoogle Scholar
  38. 38.
    Lark, B.S., Patyar, P., Banipal, T.S.: Thermodynamic studies on the interactions of diglycine with magnesium chloride in aqueous medium at different temperatures. J. Chem. Thermodyn. 38, 1592–1605 (2006) CrossRefGoogle Scholar
  39. 39.
    Millero, F.J., Surdo, A.L., Shin, C.: The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25 °C. J. Phys. Chem. 82, 784–792 (1978) CrossRefGoogle Scholar
  40. 40.
    Kozak, J.J., Knight, W.S., Kauzmann, W.: Solute–solute interactions in aqueous solutions. J. Chem. Phys. 48, 675–690 (1968) CrossRefGoogle Scholar
  41. 41.
    McMillan, W.G., Mayer, J.E.: The statistical thermodynamics of multi component system. J. Chem. Phys. 13, 276–305 (1945) CrossRefGoogle Scholar
  42. 42.
    Friedman, H.L., Krishnan, C.V.: Thermodynamics of ion hydration. In: Franks, F. (ed.) Water. A Comprehensive Treatise, vol. 3, pp. 1–118. Plenum Press, New York (1973), Ch. 1 Google Scholar
  43. 43.
    Franks, H.S., Evans, M.W.: Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507–532 (1945) CrossRefGoogle Scholar
  44. 44.
    Chalikian, T.V., Sarvazyan, A.P., Breslauer, K.J.: Partial molar volumes expansibilities, and compressibilities of α,ω-aminocarboxylic acids in aqueous solutions between 18 and 55 °C. J. Phys. Chem. 97, 13017–13026 (1993) CrossRefGoogle Scholar
  45. 45.
    Banipal, T.S., Singh, G., Lark, B.S.: Partial molal volumes of transfer of some amino acids from water to aqueous 1,4-dioxane solutions at 298.15 K. Indian J. Chem. A 39, 1011–1018 (2000) Google Scholar
  46. 46.
    Mishra, A.K., Ahluwalia, J.C.: Enthalpies, heat capacities and apparent molal volumes of transfer of some amino acids from water to aqueous t-butanol. J. Chem. Soc. Faraday Trans. I 77, 1469–1483 (1981) CrossRefGoogle Scholar
  47. 47.
    Lark, B.S., Bala, K.: Urea–glycine and urea–alanine interactions in aqueous medium. Natl. Acad. Sci. Lett. 12, 155–160 (1989) Google Scholar
  48. 48.
    Yan, Z., Wang, J., Zheng, H., Liu, D.: Volumetric properties of some α-amino acids in aqueous guanidine hydrochloride at 5, 15, 25 and 35 °C. J. Solution Chem. 27, 473–483 (1998) CrossRefGoogle Scholar
  49. 49.
    Hakin, A.W., Duke, M.M., Marty, J.L., Presuss, K.E.: Some thermodynamic properties of aqueous amino acid systems at 288.15, 298.15, 313.15 and 328.15 K: group additivity analyses of standard-state volumes and heat capacities. J. Chem. Soc. Faraday Trans. 90, 2027–2035 (1994) CrossRefGoogle Scholar
  50. 50.
    Hakin, A.W., Duke, M.M., Groft, L.L., Marty, J.L., Rashfeldt, M.L.: Calorimetric investigations of aqueous amino acid and dipeptide systems from 288.15 to 328.15 K. Can. J. Chem. 73, 725–734 (1995) CrossRefGoogle Scholar
  51. 51.
    Franks, F., Quickenden, M.A., Reig, D.S., Watson, B.: Calorimetric and volumetric studies of dilute aqueous of cycle ether derivatives. Trans. Faraday Soc. 66, 582–589 (1970) CrossRefGoogle Scholar
  52. 52.
    Shahidi, F., Farrell, P.G., Edwards, J.T.: Partial molar volumes of organic compounds in water. III. Carbohydrates. J. Solution Chem. 5, 807–816 (1976) CrossRefGoogle Scholar
  53. 53.
    Natarajan, M., Wadi, R.K., Gaur, H.C.: Apparent molar volumes and viscosities of some α- and α,ω-amino acids in aqueous ammonium chloride solutions at 298.15 K. J. Chem. Eng. Data 35, 87–93 (1990) CrossRefGoogle Scholar
  54. 54.
    Gurney, R.W.: Ionic Processes in Solution. McGraw-Hill, New York (1953) Google Scholar
  55. 55.
    Belibagli, K., Agranci, E.: Viscosities and apparent molar volumes of some amino acids in water and in 6 M guanidine hydrochloride at 25 °C. J. Solution Chem. 19, 867–882 (1990) CrossRefGoogle Scholar
  56. 56.
    Conway, B.E., Verrall, R.E.: Partial molar volumes and adiabatic compressibilities of tetra alkyl ammonium and ammonium salts in water. 1. Compressibility behaviour. J. Phys. Chem. 70, 3952–3961 (1966) CrossRefGoogle Scholar
  57. 57.
    Gekko, K., Noguchi, H.: Compressibility of globular proteins in water at 25 °C. J. Phys. Chem. 83, 2706–2714 (1979) CrossRefGoogle Scholar
  58. 58.
    Nain, A.K., Chand, D.: Volumetric, ultrasonic, and viscometric behaviour of glycine, DL-alanine and L-valine in aqueous 1,4-butanediol solutions at different temperatures. J. Chem. Thermodyn. 41, 243–249 (2009) CrossRefGoogle Scholar
  59. 59.
    Hedwig, G.R., Høiland, H.: Thermodynamic properties of peptide solutions. Part II. Partial molar isentropic pressure coefficients in aqueous solutions of some tripeptides that model protein side-chains. Biophys. Chem. 49, 175–181 (1994) CrossRefGoogle Scholar
  60. 60.
    Cabani, S., Conti, G., Matteoli, E.: Adiabatic and isothermal apparent molal compressibilities of organic compounds in water. I. Cyclic and open chain secondary alcohols and ethers. J. Solution Chem. 8, 11–23 (1979) CrossRefGoogle Scholar
  61. 61.
    Banipal, T.S., Sehgal, G.: Partial molar adiabatic compressibility of transfer of some amino acids from water to aqueous sodium chloride and aqueous glucose solutions. Thermochim. Acta 262, 175–183 (1995) CrossRefGoogle Scholar
  62. 62.
    Singh, M., Pandey, M., Yadav, R.K., Verma, H.S.: Thermodynamic studies of molar volume, pair and triplet interactions at increasing side chain length of α-amino acids in aqueous potassium chloride solutions at different concentration and 310.15 K. J. Mol. Liq. 131, 42–45 (2007) CrossRefGoogle Scholar
  63. 63.
    Banipal, T.S., Kaur, D., Banipal, P.K., Singh, G.: Thermodynamic and transport properties of L-serine and L-threonine in aqueous sodium acetate and magnesium acetate solutions at T=298.15 K. J. Chem. Thermodyn. 39, 371–384 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsGovernment College of EngineeringTirunelveliIndia
  2. 2.Department of PhysicsSt. Xavier’s Catholic College of EngineeringChunkankadaiIndia

Personalised recommendations