Skip to main content
Log in

Phase Separation of Triblock Polymers and Tritons in the Presence of Biomolecules

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Surfactant–biomolecule interactions have been investigated by studying the additive effect of various kinds of biomolecules such as amino acids, dipeptides, amino alcohols, sugars, hydroxy acids and dicarboxylic acids on the cloud point behavior of nonionic surfactants including triblock polymers (L64, P84) and tritons (TX100, TX114). In most cases, addition of biomolecules has been found to cause a depression in the cloud point of the triblock polymers and tritons. The presence of biomolecules in the solution of a nonionic surfactant causes drastic changes to the clouding behavior of the surfactant, especially at high biomolecule concentrations. The results reveal that both hydrophobicity and structural aspects play important roles in the observed cloud point variation of the nonionic surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Azeem, A., Ahmad, F.J., Khan, Z.I., Talegaonkar, S.: Nonionic surfactant vesicles as a carrier for transdermal delivery of frusemide. J. Dispers. Sci. Technol. 29, 723–730 (2008)

    Article  CAS  Google Scholar 

  2. Pollard, J.M., Shi, A.J., Göklen, K.E.: Solubility and partitioning behavior of surfactants and additives used in bioprocesses. J. Chem. Eng. Data 51, 230–236 (2006)

    Article  CAS  Google Scholar 

  3. Jiao, J.: Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv. Drug Deliv. Rev. 60, 1663–1673 (2008)

    Article  CAS  Google Scholar 

  4. Kaparissides, C., Alexandridou, S., Kotti, K., Chaitidou, S.: Recent advances in novel drug delivery systems. J. Nanotechnol. 2, 1–11 (2006)

    Google Scholar 

  5. Qiu, L.Y., Bae, Y.H.: Polymer architecture and drug delivery. Pharm. Res. 23, 1–30 (2006)

    Article  CAS  Google Scholar 

  6. Kabanov, A.V., Batrakova, E.V., Alakhov, V.Y.: Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release 82, 189–212 (2002)

    Article  CAS  Google Scholar 

  7. Smirnova, N.A.: Phase behavior and self-assembly patterns of surfactant mixtures in solutions. Russ. Chem. Rev. 74, 129–144 (2005)

    Article  CAS  Google Scholar 

  8. Fustin, C.A., Abetz, V., Gohy, J.F.: Triblock terpolymer micelles: a personal outlook. J. Eur. Phys. E 16, 291–303 (2005)

    Article  CAS  Google Scholar 

  9. Chen, S.H., Liao, C., Fratini, E., Baglioni, P., Mallamace, F.: Interaction, critical, percolation and kinetic glass transitions in Pluronic L-64 micellar solutions. Colloids Surf. A, Physicochem. Eng. Asp. 183, 95–111 (2001)

    Article  Google Scholar 

  10. Couderc, S., Li, Y., Bloor, D.M., Holzwarth, J.F., Wyn-Jones, E.: Interaction between the nonionic surfactant hexaethylene glycol mono-n-dodecyl ether (C12EO6) and the surface active nonionic ABA block copolymer Pluronic F127 (EO97PO69EO97). Formation of mixed micelles studied using isothermal titration calorimetry and differential scanning calorimetry. Langmuir 17, 4818–4824 (2001)

    Article  CAS  Google Scholar 

  11. Krogh, K.A., Hailing-Sørensen, B., Mogensen, B.B., Vejrup, K.V.: Environmental properties and effects of nonionic surfactant adjuvants in pesticides: a review. Chemosphere 50, 871–901 (2002)

    Article  Google Scholar 

  12. Rege, B.D., Kao, J.P., Polli, J.E.: Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur. J. Pharm. Sci. 16, 237–246 (2002)

    Article  CAS  Google Scholar 

  13. Li, P., Ghosh, A., Wagner, R.F., Krill, S., Joshi, Y.M., Serajuddin, A.T.M.: Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Int. J. Pharm. 288, 27–34 (2005)

    Article  CAS  Google Scholar 

  14. Chattaraj, S.C., Das, S.K.: Physicochemical characterization of influenza viral vaccine loaded surfactant vesicles. Drug Deliv. 10, 73–77 (2003)

    Article  CAS  Google Scholar 

  15. Ma, G., Barlow, D.J., Heenan, R.K., Timmins, P.A., Lawrence, M.J.: Small-angle neutron-scattering studies of nonionic surfactant vesicles. J. Phys. Chem. B 104, 9081–9085 (2000)

    Article  CAS  Google Scholar 

  16. Wittemann, A., Azzam, T., Eisenberg, A.: Biocompatible polymer vesicles from biamphiphilic triblock copolymers and their interaction with bovine serum albumin. Langmuir 23, 2224–2230 (2007)

    Article  CAS  Google Scholar 

  17. Cappel, M.J., Kreuter, J.: Effect of nonionic surfactants on transdermal drug delivery. II, Poloxamer and poloxamine surfactants. Int. J. Pharm. 69, 155–167 (1991)

    Article  CAS  Google Scholar 

  18. Myers, D.: Surfactant Science and Technology, 2nd edn. VCH, New York (1992)

    Google Scholar 

  19. Rakshit, A.K., Sharma, B.: The effect of amino acids on the surface and thermodynamic properties of poly[oxyethylene(10)] lauryl ether in aqueous solution. Colloid Polym. Sci. 281, 45–51 (2003)

    Article  CAS  Google Scholar 

  20. Sharma, K.S., Joshi, J.V., Aswal, V.K., Goyal, P.S., Rakshit, A.K.: Small-angle neutron scattering studies of nonionic surfactant: effect of sugars. Pramana 63, 297–302 (2004)

    Article  CAS  Google Scholar 

  21. Murakani, A., Fukada, K., Yamano, Y., Gohtani, S.: Effect of sugars in the D-phase emulsification of triglyceride using polyoxyethylene sorbitan fatty acid ester. J. Oleo Sci. 54, 633–639 (2005)

    Article  Google Scholar 

  22. Mahajan, S., Shaheen, A., Banipal, T.S., Mahajan, R.K.: Cloud point and surface tension studies of triblock copolymer–ionic surfactant mixed systems in the presence of amino acids or dipeptides and electrolytes. J. Chem. Eng. Data 55, 3995–4001 (2010)

    Article  CAS  Google Scholar 

  23. Da Silva, R.C., Loh, W.: Effect of additives on the cloud point of aqueous solutions of ethylene oxide–propylene oxide–ethylene oxide block copolymers. J. Colloid Interface Sci. 202, 385–390 (1998)

    Article  Google Scholar 

  24. Mata, J.P., Majhi, P.R., Guo, C., Liu, H.Z., Bahadur, P.: Concentration, temperature, and salt-induced micellization of a triblock copolymer Pluronic L64 in aqueous media. J. Colloid Interface Sci. 292, 548–556 (2005)

    Article  CAS  Google Scholar 

  25. Jain, N.J., Aswal, V.K., Goyal, P.S., Bahadur, P.: Salt induced micellization and micelle structures of PEO/PPO/PEO block copolymers in aqueous solution. Colloids Surf. A, Physicochem. Eng. Asp. 173, 85–94 (2000)

    Article  CAS  Google Scholar 

  26. Koshy, L., Saiyad, A.H., Rakshit, A.K.: The effects of various foreign substances on the cloud point of Triton X-100 and Triton X-114. Colloid Polym. Sci. 274, 582–587 (1996)

    Article  CAS  Google Scholar 

  27. Dixon, T.F.: Biochemical importance of individual amino-acids. Nature 153, 289–290 (1944)

    Article  Google Scholar 

  28. Schuster, R.: Determination of amino acids in biological, pharmaceutical, plant and food samples by automated precolumn derivatization and high-performance liquid chromatography. J. Chromatogr. B: Biochem. Appl. 431, 271–284 (1988)

    Article  CAS  Google Scholar 

  29. Mahajan, R.K., Chawla, J., Bakshi, M.S.: Depression in the cloud point of Tween in the presence of glycol additives and triblock polymers. Colloid Polym. Sci. 282, 1165–1168 (2004)

    Article  CAS  Google Scholar 

  30. Mahajan, R.K., Vohra, K.K., Kaur, N., Aswal, V.K.: Organic additives and electrolytes as cloud point modifiers in octylphenol ethoxylate solutions. J. Surfactants Deterg. 11, 243–252 (2008)

    Article  CAS  Google Scholar 

  31. Chmara, H., MiIewski, S., Andruszkiewicz, R., Mignini, F., Borowski, E.: Antibacterial action of dipeptides containing an inhibitor of glucosamine-6-phosphate isomerase. Microbiology 144, 1349–1358 (1998)

    Article  CAS  Google Scholar 

  32. Tsume, Y., Hilfinger, J.M., Amidon, G.L.: Enhanced cancer cell growth inhibition by dipeptide prodrugs of floxuridine: increased transporter affinity and metabolic stability. Mol. Pharm. 5, 717–727 (2008)

    Article  CAS  Google Scholar 

  33. Raghunath, M., Morse, E.L., Adibi, S.A.: Mechanism of clearance of dipeptides by perfused hindquarters: sarcolemmal hydrolysis of peptides. Am. J. Physiol. 259, 463–469 (1990)

    Google Scholar 

  34. Pan, Y., Webb, K.E.: Peptide-bound methionine as methionine sources for protein accretion and cell proliferation in primary cultures of ovine skeletal muscle. J. Nutr. 128, 251–256 (1998)

    CAS  Google Scholar 

  35. Constantinou-Kokotou, V.: Synthesis and biological activities of long chain 2-amino alcohols. Lett. Peptide Sci. 9, 143–152 (2002)

    CAS  Google Scholar 

  36. Ahmad, T., Kumar, S., Khan, Z.A., Din, K.: Additives as CP modifiers in an anionic micellar solution. Colloids Surf. A, Physicochem. Eng. Asp. 294, 130–136 (2007)

    Article  CAS  Google Scholar 

  37. Soccol, C.R., Vandenberghe, L.P.S., Rodrigues, C., Pandey, A.: New perspectives for citric acid production and application. Food Technol. Biotechnol. 44, 141–149 (2006)

    CAS  Google Scholar 

  38. Wee, Y.J., Kim, J.N., Ryu, H.W.: Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 44, 1–10 (2006)

    Google Scholar 

  39. Redenti, E., Szente, L., Szejtli, J.: Drug/cyclodextrin/hydroxy acid multicomponent systems. Properties and pharmaceutical applications. J. Pharm. Sci. 89, 1–8 (2000)

    Article  CAS  Google Scholar 

  40. Lian, H.Z., Mao, L., Ye, X.L., Miao, J.: Simultaneous determination of oxalic, fumaric, maleic and succinic acids in tartaric and malic acids for pharmaceutical use by ion-suppression reversed-phase high performance liquid chromatography. J. Pharmaceut. Biomed. 19, 621–625 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Durgesh Nandni thanks the UGC-SAP, New Delhi, India, for financial assistance. Kulwinder Kumar thanks the UGC-DAE, BARC. Mumbai, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Mahajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandni, D., Vohra, K.K. & Mahajan, R.K. Phase Separation of Triblock Polymers and Tritons in the Presence of Biomolecules. J Solution Chem 41, 702–714 (2012). https://doi.org/10.1007/s10953-012-9817-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9817-4

Keywords

Navigation