Journal of Solution Chemistry

, Volume 41, Issue 4, pp 702–714 | Cite as

Phase Separation of Triblock Polymers and Tritons in the Presence of Biomolecules

  • Durgesh Nandni
  • Kulwinder Kumar Vohra
  • Rakesh Kumar Mahajan


Surfactant–biomolecule interactions have been investigated by studying the additive effect of various kinds of biomolecules such as amino acids, dipeptides, amino alcohols, sugars, hydroxy acids and dicarboxylic acids on the cloud point behavior of nonionic surfactants including triblock polymers (L64, P84) and tritons (TX100, TX114). In most cases, addition of biomolecules has been found to cause a depression in the cloud point of the triblock polymers and tritons. The presence of biomolecules in the solution of a nonionic surfactant causes drastic changes to the clouding behavior of the surfactant, especially at high biomolecule concentrations. The results reveal that both hydrophobicity and structural aspects play important roles in the observed cloud point variation of the nonionic surfactants.


Triblock polymers Tritons Biomolecules Cloud point Hydrophobicity 



Durgesh Nandni thanks the UGC-SAP, New Delhi, India, for financial assistance. Kulwinder Kumar thanks the UGC-DAE, BARC. Mumbai, for financial assistance.


  1. 1.
    Azeem, A., Ahmad, F.J., Khan, Z.I., Talegaonkar, S.: Nonionic surfactant vesicles as a carrier for transdermal delivery of frusemide. J. Dispers. Sci. Technol. 29, 723–730 (2008) CrossRefGoogle Scholar
  2. 2.
    Pollard, J.M., Shi, A.J., Göklen, K.E.: Solubility and partitioning behavior of surfactants and additives used in bioprocesses. J. Chem. Eng. Data 51, 230–236 (2006) CrossRefGoogle Scholar
  3. 3.
    Jiao, J.: Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv. Drug Deliv. Rev. 60, 1663–1673 (2008) CrossRefGoogle Scholar
  4. 4.
    Kaparissides, C., Alexandridou, S., Kotti, K., Chaitidou, S.: Recent advances in novel drug delivery systems. J. Nanotechnol. 2, 1–11 (2006) Google Scholar
  5. 5.
    Qiu, L.Y., Bae, Y.H.: Polymer architecture and drug delivery. Pharm. Res. 23, 1–30 (2006) CrossRefGoogle Scholar
  6. 6.
    Kabanov, A.V., Batrakova, E.V., Alakhov, V.Y.: Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release 82, 189–212 (2002) CrossRefGoogle Scholar
  7. 7.
    Smirnova, N.A.: Phase behavior and self-assembly patterns of surfactant mixtures in solutions. Russ. Chem. Rev. 74, 129–144 (2005) CrossRefGoogle Scholar
  8. 8.
    Fustin, C.A., Abetz, V., Gohy, J.F.: Triblock terpolymer micelles: a personal outlook. J. Eur. Phys. E 16, 291–303 (2005) CrossRefGoogle Scholar
  9. 9.
    Chen, S.H., Liao, C., Fratini, E., Baglioni, P., Mallamace, F.: Interaction, critical, percolation and kinetic glass transitions in Pluronic L-64 micellar solutions. Colloids Surf. A, Physicochem. Eng. Asp. 183, 95–111 (2001) CrossRefGoogle Scholar
  10. 10.
    Couderc, S., Li, Y., Bloor, D.M., Holzwarth, J.F., Wyn-Jones, E.: Interaction between the nonionic surfactant hexaethylene glycol mono-n-dodecyl ether (C12EO6) and the surface active nonionic ABA block copolymer Pluronic F127 (EO97PO69EO97). Formation of mixed micelles studied using isothermal titration calorimetry and differential scanning calorimetry. Langmuir 17, 4818–4824 (2001) CrossRefGoogle Scholar
  11. 11.
    Krogh, K.A., Hailing-Sørensen, B., Mogensen, B.B., Vejrup, K.V.: Environmental properties and effects of nonionic surfactant adjuvants in pesticides: a review. Chemosphere 50, 871–901 (2002) CrossRefGoogle Scholar
  12. 12.
    Rege, B.D., Kao, J.P., Polli, J.E.: Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur. J. Pharm. Sci. 16, 237–246 (2002) CrossRefGoogle Scholar
  13. 13.
    Li, P., Ghosh, A., Wagner, R.F., Krill, S., Joshi, Y.M., Serajuddin, A.T.M.: Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Int. J. Pharm. 288, 27–34 (2005) CrossRefGoogle Scholar
  14. 14.
    Chattaraj, S.C., Das, S.K.: Physicochemical characterization of influenza viral vaccine loaded surfactant vesicles. Drug Deliv. 10, 73–77 (2003) CrossRefGoogle Scholar
  15. 15.
    Ma, G., Barlow, D.J., Heenan, R.K., Timmins, P.A., Lawrence, M.J.: Small-angle neutron-scattering studies of nonionic surfactant vesicles. J. Phys. Chem. B 104, 9081–9085 (2000) CrossRefGoogle Scholar
  16. 16.
    Wittemann, A., Azzam, T., Eisenberg, A.: Biocompatible polymer vesicles from biamphiphilic triblock copolymers and their interaction with bovine serum albumin. Langmuir 23, 2224–2230 (2007) CrossRefGoogle Scholar
  17. 17.
    Cappel, M.J., Kreuter, J.: Effect of nonionic surfactants on transdermal drug delivery. II, Poloxamer and poloxamine surfactants. Int. J. Pharm. 69, 155–167 (1991) CrossRefGoogle Scholar
  18. 18.
    Myers, D.: Surfactant Science and Technology, 2nd edn. VCH, New York (1992) Google Scholar
  19. 19.
    Rakshit, A.K., Sharma, B.: The effect of amino acids on the surface and thermodynamic properties of poly[oxyethylene(10)] lauryl ether in aqueous solution. Colloid Polym. Sci. 281, 45–51 (2003) CrossRefGoogle Scholar
  20. 20.
    Sharma, K.S., Joshi, J.V., Aswal, V.K., Goyal, P.S., Rakshit, A.K.: Small-angle neutron scattering studies of nonionic surfactant: effect of sugars. Pramana 63, 297–302 (2004) CrossRefGoogle Scholar
  21. 21.
    Murakani, A., Fukada, K., Yamano, Y., Gohtani, S.: Effect of sugars in the D-phase emulsification of triglyceride using polyoxyethylene sorbitan fatty acid ester. J. Oleo Sci. 54, 633–639 (2005) CrossRefGoogle Scholar
  22. 22.
    Mahajan, S., Shaheen, A., Banipal, T.S., Mahajan, R.K.: Cloud point and surface tension studies of triblock copolymer–ionic surfactant mixed systems in the presence of amino acids or dipeptides and electrolytes. J. Chem. Eng. Data 55, 3995–4001 (2010) CrossRefGoogle Scholar
  23. 23.
    Da Silva, R.C., Loh, W.: Effect of additives on the cloud point of aqueous solutions of ethylene oxide–propylene oxide–ethylene oxide block copolymers. J. Colloid Interface Sci. 202, 385–390 (1998) CrossRefGoogle Scholar
  24. 24.
    Mata, J.P., Majhi, P.R., Guo, C., Liu, H.Z., Bahadur, P.: Concentration, temperature, and salt-induced micellization of a triblock copolymer Pluronic L64 in aqueous media. J. Colloid Interface Sci. 292, 548–556 (2005) CrossRefGoogle Scholar
  25. 25.
    Jain, N.J., Aswal, V.K., Goyal, P.S., Bahadur, P.: Salt induced micellization and micelle structures of PEO/PPO/PEO block copolymers in aqueous solution. Colloids Surf. A, Physicochem. Eng. Asp. 173, 85–94 (2000) CrossRefGoogle Scholar
  26. 26.
    Koshy, L., Saiyad, A.H., Rakshit, A.K.: The effects of various foreign substances on the cloud point of Triton X-100 and Triton X-114. Colloid Polym. Sci. 274, 582–587 (1996) CrossRefGoogle Scholar
  27. 27.
    Dixon, T.F.: Biochemical importance of individual amino-acids. Nature 153, 289–290 (1944) CrossRefGoogle Scholar
  28. 28.
    Schuster, R.: Determination of amino acids in biological, pharmaceutical, plant and food samples by automated precolumn derivatization and high-performance liquid chromatography. J. Chromatogr. B: Biochem. Appl. 431, 271–284 (1988) CrossRefGoogle Scholar
  29. 29.
    Mahajan, R.K., Chawla, J., Bakshi, M.S.: Depression in the cloud point of Tween in the presence of glycol additives and triblock polymers. Colloid Polym. Sci. 282, 1165–1168 (2004) CrossRefGoogle Scholar
  30. 30.
    Mahajan, R.K., Vohra, K.K., Kaur, N., Aswal, V.K.: Organic additives and electrolytes as cloud point modifiers in octylphenol ethoxylate solutions. J. Surfactants Deterg. 11, 243–252 (2008) CrossRefGoogle Scholar
  31. 31.
    Chmara, H., MiIewski, S., Andruszkiewicz, R., Mignini, F., Borowski, E.: Antibacterial action of dipeptides containing an inhibitor of glucosamine-6-phosphate isomerase. Microbiology 144, 1349–1358 (1998) CrossRefGoogle Scholar
  32. 32.
    Tsume, Y., Hilfinger, J.M., Amidon, G.L.: Enhanced cancer cell growth inhibition by dipeptide prodrugs of floxuridine: increased transporter affinity and metabolic stability. Mol. Pharm. 5, 717–727 (2008) CrossRefGoogle Scholar
  33. 33.
    Raghunath, M., Morse, E.L., Adibi, S.A.: Mechanism of clearance of dipeptides by perfused hindquarters: sarcolemmal hydrolysis of peptides. Am. J. Physiol. 259, 463–469 (1990) Google Scholar
  34. 34.
    Pan, Y., Webb, K.E.: Peptide-bound methionine as methionine sources for protein accretion and cell proliferation in primary cultures of ovine skeletal muscle. J. Nutr. 128, 251–256 (1998) Google Scholar
  35. 35.
    Constantinou-Kokotou, V.: Synthesis and biological activities of long chain 2-amino alcohols. Lett. Peptide Sci. 9, 143–152 (2002) Google Scholar
  36. 36.
    Ahmad, T., Kumar, S., Khan, Z.A., Din, K.: Additives as CP modifiers in an anionic micellar solution. Colloids Surf. A, Physicochem. Eng. Asp. 294, 130–136 (2007) CrossRefGoogle Scholar
  37. 37.
    Soccol, C.R., Vandenberghe, L.P.S., Rodrigues, C., Pandey, A.: New perspectives for citric acid production and application. Food Technol. Biotechnol. 44, 141–149 (2006) Google Scholar
  38. 38.
    Wee, Y.J., Kim, J.N., Ryu, H.W.: Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 44, 1–10 (2006) Google Scholar
  39. 39.
    Redenti, E., Szente, L., Szejtli, J.: Drug/cyclodextrin/hydroxy acid multicomponent systems. Properties and pharmaceutical applications. J. Pharm. Sci. 89, 1–8 (2000) CrossRefGoogle Scholar
  40. 40.
    Lian, H.Z., Mao, L., Ye, X.L., Miao, J.: Simultaneous determination of oxalic, fumaric, maleic and succinic acids in tartaric and malic acids for pharmaceutical use by ion-suppression reversed-phase high performance liquid chromatography. J. Pharmaceut. Biomed. 19, 621–625 (1999) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Durgesh Nandni
    • 1
  • Kulwinder Kumar Vohra
    • 1
  • Rakesh Kumar Mahajan
    • 1
  1. 1.Department of ChemistryGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations