Journal of Solution Chemistry

, Volume 41, Issue 3, pp 392–409 | Cite as

Potentiometric Determination of the Stability Constants of Trimethyltin(IV) Chloride Complexes with Imino-bis(Methylphosphonic Acid) in Water and Dioxane–Water Mixtures

  • Ahmed A. El-Sherif


The interaction of trimethyltin(IV) (TMT) with imino-bis(methylphosphonic acid) (IDP), abbreviated as H4L, was investigated at 25 °C and at ionic strength 0.1 mol⋅dm−3 (NaNO3) using a potentiometric technique. The formation constants of the complexes formed in solution were calculated using the nonlinear least-squares program MINIQUAD-75. The stoichiometry and stability constants are reported for the complexes formed. The results show the formation of 110, 111, 112 and 11-1 complexes for the TMT–IDP system. The concentration distribution of the various complex species was evaluated. The effect of dioxane as a solvent, on both the protonation constants and the formation constants of trimethyltin(IV) complexes with IDP, is discussed. The thermodynamic parameters ΔH and ΔS calculated from the temperature dependence of the equilibrium constants were evaluated. The effect of ionic strength on the protonation constants of IDP is also discussed.


Trimethyltin(IV) Imino-bis(methylphosphonic acid) Stability constants Speciation Equilibria Ionic strength Thermodynamic parameters 


  1. 1.
    Kiss, T.: In: Burger, K. (ed.) Biocoordination Chemistry, p. 56. Ellis Horwood, Chichester (1990), and references cited therein Google Scholar
  2. 2.
    Roundup Herbicides by Monsato, p. 9. Monsato, St. Louis (1985) Google Scholar
  3. 3.
    Lejczak, B., Kafarski, P., Zygmunt, J.: Inhibition of aminopeptidases by aminophosphonates. Biochem. 28, 3549–3555 (1989) CrossRefGoogle Scholar
  4. 4.
    Dhansay, M.A., Linder, P.W.: Organophosphorus herbicides and plant growth regulators. Part 2. Equilibrium studies in aqueous solution of the complexation of transition metal(II) ions by n-(phosphonomethyl)iminodiacetic acid and related compounds. J. Coord. Chem. 28, 133–145 (1993) CrossRefGoogle Scholar
  5. 5.
    El-Sherif, A.A.: Coordination properties of bidentate (N,O) and tridentate (N,O,O) heterocyclic alcohols with dimethyltin (IV) ion. J. Coord. Chem. 64, 1240–1253 (2011) CrossRefGoogle Scholar
  6. 6.
    El-Sherif, A.A., Shoukry, M.M.: Synthesis characterization, potentiometric, and thermodynamics of dimethyltin (IV)2+ cation with 4-amino-6-hydroxy-2-mercapto pyrimidine (AHMP). J. Main Group Metal Chem. 29(4), 189–200 (2006) Google Scholar
  7. 7.
    Danish, M., Alt, H.G., Badshah, A., Ali, S., Mazhar, M., Islam, N.U.: Organotin esters of 3-(2-furanyl)-2-propenoic acid: their characterization and biological activity. J. Organomet. Chem. 486, 51–56 (1995) CrossRefGoogle Scholar
  8. 8.
    Szorcsik, A., Nagy, L., Deák, A., Scopelliti, M., Fekete, Z.A., Császár, Á., Pellerito, C., Pellerito, L.: Preparation and structural studies on the tBu2Sn(IV) complexes with aromatic mono- and dicarboxylic acids containing hetero {N} donor atom. J. Organomet. Chem. 689, 2762–2769 (2004) CrossRefGoogle Scholar
  9. 9.
    Ma, C., Li, J., Zhang, R., Wang, D.: Syntheses and crystal structures of dimethyltin(IV) derivatives with 2,6-pyridinedicarboxylic acid. Inorg. Chim. Acta 358, 4575–4580 (2005) CrossRefGoogle Scholar
  10. 10.
    Barnes, M., Stoner, H.B.: Toxic properties of some dialkyl and trialkyl tin salts. Br. J. Ind. Med. 15, 15–22 (1958) Google Scholar
  11. 11.
    Van Uitert, G.L., Hass, C.G.: Studies on the coordination compounds. A method for determining thermodynamic equilibrium constants in mixed solvents. J. Am. Chem. Soc. 75, 451–455 (1971) CrossRefGoogle Scholar
  12. 12.
    Motekaitis, R.J., Martell, A.E., Nelson, D.A.: Formation and stabilities of cobalt(II) chelates of N-benzyl triamine Schiff bases and their dioxygen complexes. Inorg. Chem. 23, 275–283 (1984) CrossRefGoogle Scholar
  13. 13.
    Serjeant, E.P.: Potentiometry and Potentiometric Titrations. Wiley, New York (1984) Google Scholar
  14. 14.
    Jameson, R.F., Wilson, M.F.: Thermodynamics of the interactions of catechol with transition metals. Part I. Free energy, enthalpy, and entropy changes for the ionisation of catechol at 25 °C. Comparison of the temperature-coefficient method with direct calorimetry. J. Chem. Soc. Dalton Trans. 2610–2614 (1972) Google Scholar
  15. 15.
    Hay, R.W., Morris, P.J.: In: Sigel, H. (ed.) Metal Ions in Biological Systems, vol. 5, p. 73. Dekker, New York (1976) Google Scholar
  16. 16.
    Mohamed, M.M.A., Shehata, M.R., Shoukry, M.M.: Trimethyltin(IV) complexes with some selected DNA constituents. J. Coord. Chem. 53, 125–142 (2001) CrossRefGoogle Scholar
  17. 17.
    Gans, P., Sabatini, A., Vacca, A.: An improved computer program for the computation of formation constants from potentiometric data. Inorg. Chim. Acta 18, 237–239 (1976) CrossRefGoogle Scholar
  18. 18.
    Pettit, L. (University of Leeds, UK): personal communication Google Scholar
  19. 19.
    Sanna, D., Bodi, I., Bouhsina, S., Micera, G., Kiss, T.: Oxovanadium(IV) complexes of phosphonic derivatives of iminodiacetic and nitrilotriacetic acids. J. Chem. Soc., Dalton Trans. 3275–3282 (1999) Google Scholar
  20. 20.
    Motekaitis, R.J., Martell, A.: Metal chelate formation by N-phosphonomethylglycine and related ligands. J. Coord. Chem. 14, 139–149 (1985) CrossRefGoogle Scholar
  21. 21.
    Takahashi, A., Natsume, T., Koshino, N., Funahashi, S., Inada, Y., Takagi, H.D.: Speciation of trimethyltin(IV) ion in aqueous solution. Can. J. Chem. 75, 1084–1092 (1997) CrossRefGoogle Scholar
  22. 22.
    Kramer-Schnabel, U., Linder, P.W.: Substituent effects in the protonation and complexation with copper(II) ions of organic monophosphate esters. A potentiometric and calorimetric study. Inorg. Chem. 30, 1248–1254 (1991) CrossRefGoogle Scholar
  23. 23.
    Rees, D.C.: Experimental evaluation of the effective dielectric constant of proteins. J. Mol. Biol. 141, 323–326 (1980) CrossRefGoogle Scholar
  24. 24.
    Rogersa, N.K., Mooreb, G.R., Sternberga, M.J.E.: Electrostatic interactions in globular proteins: calculation of the pH dependence of the redox potential of cytochrome C551. J. Mol. Biol. 182, 613–616 (1985) CrossRefGoogle Scholar
  25. 25.
    Akerlof, G., Short, O.A.: The dielectric constant of dioxane–water mixtures between 0 and 80°—correction. J. Am. Chem. Soc. 75, 6357–6362 (1953) Google Scholar
  26. 26.
    Rorabacher, D.B., MacKellar, W.J., Shu, F.R., Bonavita, M.: Solvent effects on protonation constants. Ammonia, acetate, polyamine, and polyaminocarboxylate ligands in methanol–water mixtures. Anal. Chem. 43, 561–563 (1971) CrossRefGoogle Scholar
  27. 27.
    Sharma, R.K., Jha, N.S., Sindhwani, S.K.: A study of the chelation behaviour of bivalent metal complexes of biologically active 2-hydroxy-1,4-naphthoquinone monoxime (HNQM) in dioxan–water mixtures. Thermochim. Acta 156, 267–273 (1984) CrossRefGoogle Scholar
  28. 28.
    Shoukry, M.M., Shoukry, E.M., El-Medani, S.M.: Metal complexes of cephradine: synthesis and equilibrium studies. Monatsh. Chem. 126, 909–918 (1995) CrossRefGoogle Scholar
  29. 29.
    Sigel, H.: Hydrophobic interactions in biological systems: some background information based on ligand–ligand interactions in metal ion complexes. Pure Appl. Chem. 61, 923–932 (1989) CrossRefGoogle Scholar
  30. 30.
    Bjerrum, J.: Metal–Amine Formation in Aqueous Solution. Haase, Copenhagen (1941) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceCairo UniversityCairoEgypt

Personalised recommendations