Journal of Solution Chemistry

, Volume 40, Issue 11, pp 1863–1873 | Cite as

Experimental Study of the Excess Molar Volumes of Binary and Ternary Mixtures Containing Water + (1,2-Ethanediol, or 1,2-Propanediol, or 1,3-Propanediol, or 1,2-Butanediol) + (1-n-Butyl-3-methylimidazolium Bromide) at 298.15 K and Atmospheric Pressure



Densities of binary and ternary mixtures containing water + (1,2-ethanediol or 1,2-propanediol or 1,3-propanediol or 1,2-butanediol) + (1-n-butyl-3-methylimidazolium bromide at 0.01 mole fraction) at 298.15 K and atmospheric pressure have been determined as a function of composition using an Anton Paar densimeter (Model DMA 55). Excess molar volumes (\(V_{\mathrm{m}}^{\mathrm{E}}\)) were calculated. The values are negative for all mixtures over the whole composition range.


Water Alkanediols Ionic liquid Excess molar volume 



Marcelo Rodrigues wishes to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the financial support received in the form of a postgraduate fellowship.


  1. 1.
    Gaillon, L., Sirieix-Plenet, J., Letellier, P.: Volumetric study of binary solvent mixtures constituted by amphiphilic ionic liquids at room temperature (1-alkyl-3-methylimidazolium bromide) and water. J. Solution Chem. 33, 1333–1347 (2004) CrossRefGoogle Scholar
  2. 2.
    Gardas, R.L., Oswal, S.L.: Volumetric and transport properties of ternary mixtures containing 1-butanol or 1-pentanol, triethylamine and cyclohexane at 303.15 K: experimental data, correlation and prediction by the ERAS model. J. Solution Chem. 37, 1449–1470 (2008) CrossRefGoogle Scholar
  3. 3.
    George, J., Sastry, N.V.: Densities, dynamic viscosities, speeds of sound, and relative permittivities for water + alkanediols (propane-1,2- and -1,3-diol and butane-1,2-, -1,3-, -1,4-, and -2,3-diol) at different temperatures. J. Chem. Eng. Data 48, 1529–1539 (2003) CrossRefGoogle Scholar
  4. 4.
    Geyer, H., Ulbig, P., Görnert, M.: Measurement of densities and excess molar volumes for (1,2-ethanediol, or 1,2-propanediol, or 1,2-butanediol + water) at the temperatures (278.15, 288.15, 298.15, 308.15, and 318.15) K and for (2,3-butanediol + water) at the temperatures (308.15, 313.15, and 318.15) K. J. Chem. Thermodyn. 32, 1585–1596 (2000) CrossRefGoogle Scholar
  5. 5.
    Geyer, H., Ulbig, P., Görnert, M., Susanto, A.: Measurement of densities and excess molar volumes for (1,2-propanediol, or 1,2-butanediol + water) at the temperatures (288.15, 298.15, and 308.15) K and at the pressures (0.1, 20, 40, and 60) MPa. J. Chem. Thermodyn. 33, 987–997 (2001) CrossRefGoogle Scholar
  6. 6.
    Hawrylak, B., Gracie, K., Palepu, R.: Thermodynamic properties of binary mixtures of butanediols with water. J. Solution Chem. 21, 17–31 (1998) CrossRefGoogle Scholar
  7. 7.
    Li, Q., Tian, Y., Wang, S.: Densities and excess molar volumes for binary mixtures of 1,4-butanediol + 1,2-propanediol, + 1,3-propanediol, and + ethane-1,2-diol. J. Chem. Eng. Data 53, 271–274 (2008) CrossRefGoogle Scholar
  8. 8.
    Lide, D.R.: Handbook of Chemistry and Physics. CRC Press, Boca Raton (2005) Google Scholar
  9. 9.
    Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948) CrossRefGoogle Scholar
  10. 10.
    Romero, C.M., Paez, M.S., Perez, D.: A comparative study of the volumetric properties of dilute aqueous solutions of 1-propanol, 1,2-propanediol, 1,3-propanediol, and 1,2,3-propanetriol at various temperatures. J. Chem. Thermodyn. 40, 1645–1653 (2008) CrossRefGoogle Scholar
  11. 11.
    Tôrres, R.B., Francesconi, A.Z., Volpe, P.L.O.: Experimental study and modelling using the ERAS-model of the excess molar volume of acetonitrile + alkanols mixtures at different temperatures and atmospheric pressure. Fluid Phase Equilib. 210, 287–306 (2003) CrossRefGoogle Scholar
  12. 12.
    Tôrres, R.B., Francesconi, A.Z., Volpe, P.L.O.: Volumetric properties of binary mixtures of acetonitrile and chloroalkanes at 25 °C and atmospheric pressure. J. Solution Chem. 32, 417–434 (2003) CrossRefGoogle Scholar
  13. 13.
    Tôrres, R.B., Pina, C.G., Francesconi, A.Z.: Application of the Prigogine-Flory-Patterson theory to excess molar volume of binary mixtures of acetonitrile with 1-alkanols. J. Mol. Liq. 107, 127–139 (2003) CrossRefGoogle Scholar
  14. 14.
    Tôrres, R.B., Francesconi, A.Z., Volpe, P.L.O.: Thermodynamics of binary liquid mixtures: application of the Prigogine-Flory-Patterson theory to excess molar volumes of acetonitrile + 1-alkanols systems. J. Mol. Liq. 110, 81–85 (2004) CrossRefGoogle Scholar
  15. 15.
    Vercher, E., Solsona, S., Vázquez, M.I., Martınez-Andreu, A.: Apparent molar volumes of lithium chloride in 1-propanol + water in the temperature range from 288.15 to 318.15 K. Fluid Phase Equilib. 209, 95–111 (2003) CrossRefGoogle Scholar
  16. 16.
    Zafarani-Moattar, M.T., Shekaari, H.: Apparent molar volume and isentropic compressibility of ionic liquid 1-butyl-3-methylimidazolium bromide in water, methanol, and ethanol at T = (298.15 to 318.15) K. J. Chem. Thermodyn. 37, 1029–1035 (2005) CrossRefGoogle Scholar
  17. 17.
    Zorebski, E., Waligóra, A.: Densities, excess molar volumes, and isobaric thermal expansibilities for 1,2-ethanediol + 1-butanol, or 1-hexanol, or 1-octanol in the temperature range from (293.15 to 313.15) K. J. Chem. Eng. Data 53, 591–595 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departamento de Engenharia de Sistemas Químicos, Faculdade de Engenharia QuímicaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations