Advertisement

Journal of Solution Chemistry

, 40:1528 | Cite as

Apparent Molar Volume and Isentropic Compressibility for the Binary Systems {Methyltrioctylammonium Bis(trifluoromethylsulfonyl)imide + Methyl Acetate or Methanol} and (Methanol + Methyl Acetate) at T=298.15, 303.15, 308.15 and 313.15 K and Atmospheric Pressure

  • Indra Bahadur
  • Nirmala Deenadayalu
Article

Abstract

The densities and speeds of sound for binary mixtures containing the solute ionic liquid (IL) methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([MOA]+[Tf2N]), solute/solvent methanol, and solvent methyl acetate have been measured at 298.15, 303.15, 308.15 and 313.15 K at atmospheric pressure. The binary mixtures studied are ([MOA]+[Tf2N] + methyl acetate or methanol), and (methanol + methyl acetate). The apparent molar volume, V φ and the apparent molar isentropic compressibility, k φ , have been evaluated from the experimental density and speed of sound data, respectively. The parameters of a Redlich–Mayer type equation were fitted to the apparent molar volume and apparent molar isentropic compressibility data. The apparent molar volume and apparent molar isentropic compressibility at infinite dilution, \(V_{\phi}^{0}\) and \(k_{\phi}^{0}\), respectively, of the binary solutions have also been calculated at each temperature. The infinite dilution apparent molar volume indicates that intermolecular interactions for (IL + methyl acetate) mixtures are stronger than for (IL + methanol) mixtures at all temperatures except at 298.15 K, and that \(V_{\phi}^{0}\) for the (IL + methyl acetate or methanol) binary systems increases with an increase in temperature. For the (methanol + methyl acetate) system the intermolecular interaction are weaker and \(V_{\phi}^{0}\) also increases with an increase in temperature. Values of the infinite dilution apparent molar expansibility, \(E_{\phi}^{0}\), indicate that the interaction between (IL + methyl acetate) is greater than for (IL + methanol) and (methanol + methyl acetate).

The isentropic compressibilities increase with an increase in temperature for each binary system. At a fixed temperature the isentropic compressibilities also increase with an increase in concentration of the solute for the systems (IL + methyl acetate) and (methanol + methyl acetate), but decrease for the system (IL + methanol). Negative values of \(k_{\phi}^{0}\) for ([MOA]+[Tf2N] + methyl acetate or methanol) and (methanol + methyl acetate) mixtures can be attributed to the predominance of a penetration effect resulting in greater resistance to compression.

Keywords

Ionic liquid Methanol Methyl acetate Apparent molar volumes Redlich–Mayer type equation Isentropic compressibility Speed of sound 

References

  1. 1.
    Hagiwara, R., Ito, Y.: Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J. Fluorine Chem. 105, 222–227 (2000) Google Scholar
  2. 2.
    Wong, D.S.H., Chen, J.P., Chang, J.M., Chou, C.H.: Phase equilibria of water and ionic liquids [emim][PF6] and [bmim][PF6]. Fluid Phase Equilib. 194, 1089–1095 (2002) CrossRefGoogle Scholar
  3. 3.
    Freemantle, M.: Designer solvents: ionic liquids may be boost clean technology development. Chem. Eng. News 76, 32–37 (1998) CrossRefGoogle Scholar
  4. 4.
    Seddon, K.R.: Room temperature ionic liquids: neoteric solvents for clean catalysis. Kinet. Catal. 37, 743–748 (1996) Google Scholar
  5. 5.
    Krummen, M., Wasserscheid, P., Gmehling, J.: Measurement of activity coefficients at infinite dilution in ionic liquids using the dilutor technique. J. Chem. Eng. Data 47, 1411–1417 (2002) CrossRefGoogle Scholar
  6. 6.
    Carmichael, A.J., Seddon, K.R.: Polarity study of some 1-alkyl-3-methylimidazolium ambient temperature ionic liquids with the solvatochromic dye Nile Red. J. Phys. Org. Chem. 13, 591–595 (2000) CrossRefGoogle Scholar
  7. 7.
    Wasserscheid, P., Gordon, C.M., Hilgers, C., Muldoon, M.J., Dunkin, I.R.: Ionic liquids: polar, but weakly coordinating solvents for the first biphasic oligomerisation of ethane to higher α-olefins with cationic Ni complexes. Chem. Commun. 1186–1187 (2001) Google Scholar
  8. 8.
    Song, C.E., Shim, W.H., Roh, E.J., Lee, S.G., Choi, L.H.: Ionic liquids as powerful media in scandiumtriflate catalysed Diels–Alder reactions: significant rate acceleration, selectivity improvement and easy recycling of catalyst. Chem. Commun. 1122–1123 (2001) Google Scholar
  9. 9.
    Najdanovic-Visak, V., Esperança, J.M.S., Rebelo, L.P.N.: Phase behaviour of room temperature ionic liquid solutions: an unusually large co-solvent effect in (water + ethanol). Phys. Chem. Chem. Phys. 4, 1701–1703 (2002) CrossRefGoogle Scholar
  10. 10.
    Wheeler, C., West, K.N., Liotta, C.L., Eckert, C.A.: Ionic liquids as catalytic green solvents for nucleophilic displacement reactions. Chem. Commun. 887–888 (2001) Google Scholar
  11. 11.
    Endres, F.: Electrodeposition of a thin germanium film on gold from a room temperature ionic liquid. Chem. Phys. 3, 3165–3174 (2001) CrossRefGoogle Scholar
  12. 12.
    Wasserscheid, P., Keim, W.: Ionic liquids—new “solutions” for transition metal catalysis. Angew. Chem., Int. Ed. Engl. 39, 3772–3789 (2000) CrossRefGoogle Scholar
  13. 13.
    Kato, R., Gmehling, J.: Activity coefficients at infinite dilution of various solutes in the ionic liquids [MMIM]+[CH3SO4], [MMIM]+[CH3OC2H4SO4], [MMIM]+[(CH3)2PO4], [C5H5NC2H5]+[(CF3SO2)2N] and [C5H5NH]+[C2H5OC2H4OSO3]. Fluid Phase Equilib. 226, 37–44 (2004) CrossRefGoogle Scholar
  14. 14.
    Martyn, J.E., Kenneth, R.S.: Ionic liquids. Green solvent for future. Pure Appl. Chem. 72, 1391–1398 (2000) CrossRefGoogle Scholar
  15. 15.
    Heintz, A., Kulikov, D.V., Verevkin, S.P.: Thermodynamic properties of mixtures containing ionic liquids. Activity coefficients at infinite dilution of polar solutes in 4-methyl-N-butyl-pyridinium tetrafluoroborate using gas-liquid chromatography. J. Chem. Thermodyn. 34, 1314–1347 (2002) CrossRefGoogle Scholar
  16. 16.
    Heintz, A., Kulikov, D.V., Verevkin, S.P.: Thermodynamic properties of mixtures containing ionic liquids. 2. Activity coefficients at infinite dilution of hydrocarbons and polar solutes in 1-methyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide and in 1,2-dimethyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide using gas-liquid chromatography. J. Chem. Eng. Data 47, 894–899 (2002) CrossRefGoogle Scholar
  17. 17.
    Letcher, T.M., Deenadayalu, N., Soko, B., Ramjugernath, D., Nevines, A., Naicker, P.K.: Activity coefficients at infinite dilution of organic solutes in 1-hexyl-3-methylimidazolium hexafluorophosphate from gas-liquid chromatography. J. Chem. Eng. Data 48, 708–711 (2003) CrossRefGoogle Scholar
  18. 18.
    Letcher, T.M., Soko, B., Reddy, P., Deenadayalu, N.: Determination of activity coefficients at infinite dilution of solutes in the ionic liquid 1-hexyl-3-methylimidazolium tetrafluoroborate using gas-liquid chromatography. J. Chem. Eng. Data 48, 1587–1590 (2003) CrossRefGoogle Scholar
  19. 19.
    Vasiltsova, T.V., Verevkin, S.P., Bich, E., Heintz, A., Bogel-Lukasik, R., Domańska, U.: Thermodynamic properties of mixtures containing ionic liquids. Activity coefficients of ethers and alcohols in 1-methyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) imide using the transpiration method. J. Chem. Eng. Data 50, 142–148 (2005) CrossRefGoogle Scholar
  20. 20.
    Kato, R., Krummen, M., Gmehling, J.: Measurement and correlation of vapour–liquid equilibria and excess enthalpies of binary systems containing ionic liquids and hydrocarbons. Fluid Phase Equilib. 224, 47–54 (2004) CrossRefGoogle Scholar
  21. 21.
    Marsh, K.N., Deev, A., Wu, A.C.-T., Tran, E., Klamt, A.: Room temperature ionic liquids as replacements for conventional solvents—a review. Korean J. Chem. Eng. 19, 357–362 (2002) CrossRefGoogle Scholar
  22. 22.
    Najdanovic-Visak, V., Esperança, J.M.S.S., Rebelo, L.P.N., da Ponte, M.N., Guedes, H.J.R., Seddon, K.R., de Souza, H.C., Szydlowski, J.: Pressure, isotope, and water co-solvent effects in liquid–liquid equilibria of (ionic liquid + alcohol) systems. J. Phys. Chem. B 107, 12797–12807 (2003) CrossRefGoogle Scholar
  23. 23.
    Heintz, A., Lehmann, J.K., Wertz, C.: Thermodynamic properties of mixtures containing ionic liquids. 3. Liquid–liquid equilibria of binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with propan-1-ol, butan-1-ol, and pentan-1-ol. J. Chem. Eng. Data 48, 472–474 (2003) CrossRefGoogle Scholar
  24. 24.
    Crosthwaite, J.M., Aka, S.N.V., Magin, E.J., Brennecke, J.F.: Liquid phase behavior of imidazolium-based ionic liquids with alcohols. J. Phys. Chem. B 108, 5113–5119 (2004) CrossRefGoogle Scholar
  25. 25.
    Wu, C.-T., Marsh, K.N., Deev, A.V., Boxall, J.A.: Liquid–liquid equilibria of room-temperature ionic liquids and butan-1-ol. J. Chem. Eng. Data 48, 486–491 (2003) CrossRefGoogle Scholar
  26. 26.
    Domańska, U., Marciniak, A.: Solubility of 1-alkyl-3-methylimidazolium hexafluorophosphate in hydrocarbons. J. Chem. Eng. Data 48, 451–456 (2003) CrossRefGoogle Scholar
  27. 27.
    Domańska, U., Marciniak, A.: Solubility of ionic liquid [emim][PF6] in alcohols. J. Phys. Chem. B 108, 2376–2382 (2004) CrossRefGoogle Scholar
  28. 28.
    Letcher, T.M., Deenadayalu, N.: Ternary liquid–liquid equilibria for mixtures of 1-methyl-3-octyl-imidazolium chloride + benzene + an alkane at T=298.2 K and 1 atm. J. Chem. Thermodyn. 35, 67–76 (2003) CrossRefGoogle Scholar
  29. 29.
    Crosthwaite, J.M., Aki, S.N.V., Maginn, E.J., Brennecke, J.F.: Liquid phase behaviour of imidazolium-based ionic liquids with alcohols: effect of hydrogen bonding and non-polar interactions. Fluid Phase Equilib. 228–229, 303–309 (2005) CrossRefGoogle Scholar
  30. 30.
    Domańska, U., Bogel-Lukasik, E., Bogel-Lukasik, R.: Solubility of 1-dodecyl-3-methylimidazolium chloride in alcohols (C2–C12). J. Phys. Chem. B 107, 1858–1863 (2003) CrossRefGoogle Scholar
  31. 31.
    Domańska, U., Bogel-Lukasik, E.: Measurements and correlation of the (solid + liquid) equilibria of [1-decyl-3-methylimidazolium chloride + alcohols (C2–C12)]. Ind. Eng. Chem. Res. 42, 6986–6992 (2003) CrossRefGoogle Scholar
  32. 32.
    Domańska, U., Mazurowska, L.: Solubility of 1,3-dialkylimidazolium chloride or hexafluorophosphate or methylsulfonate in organic solvents. Effect of the anions on solubility. Fluid Phase Equilib. 221, 73–82 (2004) CrossRefGoogle Scholar
  33. 33.
    Sadeghi, R., Shekaari, H., Hosseini, R.: Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures. J. Chem. Thermodyn. 41, 273–289 (2009) CrossRefGoogle Scholar
  34. 34.
    Zafarani-Moattar, M.T., Shekaari, H.: Apparent molar volume and isentropic compressibility of ionic liquid 1-butyl-3-methylimidazolium bromide in water, methanol, and ethanol at T = (298.15 to 318.15) K. J. Chem. Thermodyn. 37, 1029–1035 (2005) CrossRefGoogle Scholar
  35. 35.
    Das, D., Das, B., Hazra, D.K.: Ultrasonic velocities and isentropic compressibilities of some symmetrical tetraalkylammonium salts in N,N-dimethylacetamide at 298.15 K. J. Mol. Liq. 111, 15–18 (2004) CrossRefGoogle Scholar
  36. 36.
    Radhamma, M., Venkatesu, P., Prabhakara Rao, M.V., Lee, M.-J., Lin, H.-M.: Excess molar volumes and ultrasonic studies of dimethylsulphoxide with ketones at T=303.15 K. J. Chem. Thermodyn. 40, 492–497 (2008) CrossRefGoogle Scholar
  37. 37.
    Pires, R.M., Costa, H.F., Ferreira, A.G.M., Fonseca, I.M.A.: Viscosity and density of water + ethyl acetate + ethanol mixtures at 298.15 and 318.15 K and atmospheric pressure. J. Chem. Eng. Data 52, 1240–1245 (2007) CrossRefGoogle Scholar
  38. 38.
    Rohman, N., Dass, N.N., Mahiuddin, S.: Isentropic compressibility of aqueous and methanolic sodium thiocyanate solutions. J. Chem. Eng. Data 44, 465–472 (1999) CrossRefGoogle Scholar
  39. 39.
    Wahab, A., Mahiuddin, S.: Isentropic compressibility, electrical conductivity, shear relaxation time, surface tension, and Raman spectra of aqueous zinc nitrate solutions. J. Chem. Eng. Data 49, 126–132 (2004) CrossRefGoogle Scholar
  40. 40.
    Abraham, R., Abdulkhadar, M., Asokan, C.V.: Ultrasonic investigation of molecular interaction in binary mixtures of nitriles with methanol/toluene. J. Chem. Thermodyn. 32, 1–16 (2000) CrossRefGoogle Scholar
  41. 41.
    Raju, K., Rajamannan, B., Rakkappan, C.: Ultrasonic study of molecular interactions in binary mixtures of aprotic and inert solvents. J. Mol. Liq. 100, 113–118 (2002) CrossRefGoogle Scholar
  42. 42.
    Galan, J.J., Del Castillo, J.L., Gonzalez-Perez, A., Czapkiewicz, J., Rodriguez, J.R.: Density and sound velocity studies of aqueous solutions of tetradecyltrimethylammonium nitrate at different temperatures. J. Solution Chem. 32, 919–927 (2003) CrossRefGoogle Scholar
  43. 43.
    Blandmer, M.J., Davis, M.I., Douheret, G., Reis, J.C.: Apparent molar isentropic compressions and expansions of solutions. Chem. Soc. Rev. 30, 8–15 (2001) CrossRefGoogle Scholar
  44. 44.
    Sibiya, P.N., Deenadayalu, N.: Excess molar volumes and isentropic compressibility of binary systems {trioctylmethylammonium bis(trifluoromethylsulfonyl) imide + methanol or ethanol or 1-propanol} at different temperatures. J. Chem. Thermodyn. 40, 1041–1045 (2008) CrossRefGoogle Scholar
  45. 45.
    Deenadayalu, N., Kumar, S., Bhujrajh, P.: Liquid densities and excess molar volumes for (ionic liquids + methanol + water) ternary system at atmospheric pressure and at various temperatures. J. Chem. Thermodyn. 39, 1318–1324 (2007) CrossRefGoogle Scholar
  46. 46.
    Bhujrajh, P., Deenadayalu, N.: Liquid densities and excess molar volumes for binary systems (ionic liquid + methanol or water) at 298.15, 303.15 and 313.15 K, and at atmospheric pressure. J. Solution Chem. 36, 563–672 (2007) CrossRefGoogle Scholar
  47. 47.
    Deenadayalu, N., Ngcongo, K.C., Letcher, T.M., Ramjugernath, D.: Liquid–liquid equilibria for ternary mixtures (an ionic liquid + benzene + heptane or hexadecane) at T=298.2 K and atmospheric pressure. J. Chem. Eng. Data 51, 988–991 (2006) CrossRefGoogle Scholar
  48. 48.
    Deenadayalu, N., Thango, S.H., Letcher, T.M., Ramjugernath, D.: Measurement of activity coefficients at infinite dilution using polar and non-polar solutes in the ionic liquid 1-methyl-3-octyl-imidazolium diethyleneglycolmonomethylethersulfate at T = (288.15, 298.15, and 313.15) K. J. Chem. Thermodyn. 38, 542–546 (2006) CrossRefGoogle Scholar
  49. 49.
    Deenadayalu, N., Bhujrajh, P.: Density, speed of sound, and derived thermodynamic properties of ionic liquids [EMIM]+ [BETI] or ([EMIM]+[CH3(OCH2CH2)2OSO3] + methanol or + acetone) at T = (298.15 or 303.15 or 313.15) K. J. Chem. Eng. Data 53, 1098–1102 (2008) CrossRefGoogle Scholar
  50. 50.
    Oswal, S.L., Putta, S.S.R.: Excess molar volumes of binary mixtures of alkanols with ethyl acetate from 298.15 to 323.15 K. Thermochim. Acta 373, 141–152 (2001) CrossRefGoogle Scholar
  51. 51.
    Hasan, M., Hiray, A.P., Kadam, U.B., Shirude, D.F., Kurhe, K.J., Sawant, A.B.: Densities, sound speed, and IR studies of (methanol + 1-acetoxybutane) and (methanol + 1,1-dimethylethyl ester) at (298.15, 303.15, 308.15, and 313.15) K. J. Chem. Eng. Data 55, 535–538 (2010) CrossRefGoogle Scholar
  52. 52.
    Oswal, S.L., Oswal, P., Modi, P.S., Dave, J.P., Gardas, R.L.: Acoustic, volumetric, compressibility and refractivity properties and Flory’s reduction parameters of some homologous series of alkyl alkanoates from 298.15 to 333.15 K. Thermochim. Acta 410, 1–14 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ChemistryDurban University of TechnologyDurbanSouth Africa

Personalised recommendations