Skip to main content
Log in

Conductivities of the Ternary Systems Y(NO3)3+La(NO3)3+H2O, La(NO3)3+Ce(NO3)3+H2O, La(NO3)3+Nd(NO3)3+H2O and Their Binary Subsystems at Different Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Electrical conductivities were measured for the ternary systems Y(NO3)3+La(NO3)3+H2O, La(NO3)3+Ce(NO3)3+H2O, La(NO3)3+Nd(NO3)3+H2O, and their binary subsystems Y(NO3)3+H2O, La(NO3)3+H2O, Ce(NO3)3+H2O, and Nd(NO3)3+H2O at (293.15, 298.15 and 308.15) K. The measured conductivities were used to test the generalized Young’s rule and the semi-ideal solution theory. The comparison results show that the generalized Young’s rule and the semi-ideal solution theory can yield good predictions for the conductivities of the ternary electrolyte solutions, implying that the conductivities of aqueous solutions of (1:3 + 1:3) electrolyte mixtures can be well predicted from those of their constituent binary solutions by the simple equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

activity

A l :

coefficients in Eq. 4

B,C:

solute components

I :

ionic strength

m :

molality (mol⋅kg−1)

N :

the number of experimental data

x :

mole fraction

y :

ionic strength fraction

σ :

conductivity

δ :

function defined by Eq. 6

ϕ :

osmotic coefficient

Δ:

function defined by Eq. 5

io:

quantity in binary solutions at the same water activity as that of a mixed solution

o:

quantity in binary solutions

o,I :

quantity in binary solutions at the same ionic strength as that of a mixed solution

B,C:

components

calc:

calculational quantity

Eq. i :

prediction of Eq. 2 or Eq. 3

exp :

experimental quantity

M i X i :

component index

w:

water

References

  1. Miller, D.G.: Binary mixing approximations and relations between specific conductance, molar conductance, equivalent conductance, and ionar conductance for mixtures. J. Phys. Chem. 100, 1220–1226 (1996)

    Article  CAS  Google Scholar 

  2. Hu, Y.F., Lee, H.: Prediction of viscosity of mixed electrolyte solutions based on the Eyring’s absolute rate theory and the semi-ideal hydration model. Electrochim. Acta 48, 1789–1796 (2003)

    Article  CAS  Google Scholar 

  3. Hu, Y.F.: Prediction of viscosity of mixed electrolyte solutions based on the Eyring’s absolute rate theory and the equations of Patwardhan and Kumar. Chem. Eng. Sci. 59, 2457–2464 (2004)

    Article  CAS  Google Scholar 

  4. Yang, J.Z., Liu, J.G., Tong, J., Guan, W., Fang, D.W., Yan, C.W.: Systematic study of the simple predictive approaches for thermodynamic and transport properties of multicomponent solutions. Ind. Eng. Chem. Res. 49, 7671–7677 (2010)

    Article  CAS  Google Scholar 

  5. Andrzej, A., Malgorzata, M.L.: Computation of electrical conductivity of multicomponent aqueous systems in wide concentration and temperature ranges. Ind. Eng. Chem. Res. 36, 1932–1943 (1997)

    Article  Google Scholar 

  6. Scatchard, G.: The speed of reaction in concentrated solutions and the mechanism of the inversion of sucrose. J. Am. Chem. Soc. 43, 2387–2406 (1921)

    Article  CAS  Google Scholar 

  7. Scatchard, G.: The hydration of sucrose in water solution as calculated from vapor-pressure measurements. J. Am. Chem. Soc. 43, 2406–2418 (1921)

    Article  CAS  Google Scholar 

  8. Stokes, R.H., Robinson, R.A.: Ionic hydration and activity in electrolyte solutions. J. Am. Chem. Soc. 70, 1870–1878 (1948)

    Article  CAS  Google Scholar 

  9. Robinson, R.A., Stokes, R.H.: Activity coefficients in aqueous solutions of sucrose, mannitol and their mixtures at 25 °C. J. Phys. Chem. 65, 1954–1958 (1961)

    Article  CAS  Google Scholar 

  10. Stokes, R.H., Robinson, R.A.: Interactions in aqueous nonelectrolyte solutions. I. Solute–solvent equilibria. J. Phys. Chem. 70, 2126–2130 (1966)

    Article  CAS  Google Scholar 

  11. Hu, Y.F.: The thermodynamics of nonelectrolyte systems at constant activities of any number of components. J. Phys. Chem. B 107, 13168–13177 (2003)

    Article  CAS  Google Scholar 

  12. Hu, Y.F., Fan, S.S., Liang, D.Q.: The semi-ideal solution theory for mixed ionic solutions at solid-liquid-vapor equilibrium. J. Phys. Chem. A 110, 4276–4284 (2006)

    Article  CAS  Google Scholar 

  13. Young, T.F., Wu, Y.C., Krawetz, A.A.: Thermal effects of the interactions between ions of like charge. Discuss. Faraday Soc. 24, 37–42 (1957)

    Article  Google Scholar 

  14. Hu, Y.F., Zhang, Z.X., Zhang, Y.H., Fan, S.S., Liang, D.Q.: Viscosity and density of the nonelectrolyte system mannitol + sorbitol + sucrose + H2O and its binary and ternary subsystems at 298.15 K. J. Chem. Eng. Data 51, 438–442 (2006)

    Article  CAS  Google Scholar 

  15. Hu, Y.F.: New Predictive equations for the specific and apparent molar heat capacities of multicomponent aqueous solutions conforming to the linear isopiestic relation. Bull. Chem. Soc. Jpn. 74, 47–52 (2001)

    Article  CAS  Google Scholar 

  16. Wu, Y.C., Koch, W.F., Zhong, E.C., Friedman, H.L.: The cross-square rule for transport in electrolyte mixtures. J. Phys. Chem. 92, 1692–1695 (1988)

    Article  CAS  Google Scholar 

  17. Hu, Y.F., Zhang, X.M., Li, J.G., Liang, Q.Q.: The semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions. J. Phys. Chem. B 112, 15376–15381 (2008)

    Article  CAS  Google Scholar 

  18. Spedding, F.H., Pikal, M.J., Ayers, B.O.: Apparent molal volumes of some aqueous rare earth chloride and nitrate solutions at 25 °C. J. Phys. Chem. 70, 2440–2449 (1966)

    Article  CAS  Google Scholar 

  19. Spedding, F.H., Cullen, P.F., Habenschuss, A.: Apparent molal volumes of some dilute aqueous rare earth salt solutions at 25 °C. J. Phys. Chem. 78, 1106–1110 (1974)

    Article  CAS  Google Scholar 

  20. Zdanovskii, A.B.: Regularities in the property variations of mixed solutions. Tr. Sol. Lab. Akad. Nauk SSSR 6, 5–70 (1936)

    Google Scholar 

  21. Hu, Y.F., Zhang, X.M., Jin, C.W., Peng, X.M.: The semi-ideal solution theory. 3. Extension to viscosity of multicomponent aqueous solutions. J. Solution Chem. 39, 1828–1844 (2010)

    Article  CAS  Google Scholar 

  22. Rard, J.A., Miller, D.G., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 4. La(NO3)3, Pr(NO3)3, and Nd(NO3)3. J. Chem. Eng. Data 24, 348–354 (1979)

    Article  CAS  Google Scholar 

  23. Rard, J.A., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 6. Eu(NO3)3, Y(NO3)3, and YCl3. J. Chem. Eng. Data 27, 454–461 (1982)

    Article  CAS  Google Scholar 

  24. Ruas, A., Simonin, J.P., Turq, P., Moisy, Ph.: Experimental determination of water activity for binary aqueous cerium(III) ionic solutions: application to an assessment of the predictive capability of the binding mean spherical approximation model. J. Phys. Chem. B 109, 23043–23050 (2005)

    Article  CAS  Google Scholar 

  25. Rard, J.A., Spedding, F.H.: Electrical conductances of some aqueous rare earth electrolyte solutions at 25 °C. III. The rare earth nitrates. J. Phys. Chem. 79, 257–262 (1975)

    Article  CAS  Google Scholar 

  26. Hu, Y.F., Peng, X.M., Jin, C.W., Liang, Y.G., Chu, H.D., Zhang, X.M.: The semi-ideal solution theory. 4. Applications to the densities and conductivities of the mixed electrolyte and nonelectrolyte solutions. J. Solution Chem. 39, 1597–1608 (2010)

    Article  CAS  Google Scholar 

  27. Hu, Y.F., Jin, C.W., Ling, S., Zhang, J.Z.: Densities of the ternary systems Y(NO3)3+Ce(NO3)3+H2O, Y(NO3)3+Nd(NO3)3+H2O, and Ce(NO3)3+Nd(NO3)3+H2O and their binary subsystems at different temperatures. J. Chem. Eng. Data 55, 5031–5035 (2010)

    Article  CAS  Google Scholar 

  28. Wang, Z.C., He, M., Wang, J., Li, J.L.: Modeling of aqueous 3–1 rare earth electrolytes and their mixtures to very high concentrations. J. Solution Chem. 35, 1137–1156 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Feng Hu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

143 KB

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, YF., Jin, CW., Zhang, JZ. et al. Conductivities of the Ternary Systems Y(NO3)3+La(NO3)3+H2O, La(NO3)3+Ce(NO3)3+H2O, La(NO3)3+Nd(NO3)3+H2O and Their Binary Subsystems at Different Temperatures. J Solution Chem 40, 1447–1457 (2011). https://doi.org/10.1007/s10953-011-9726-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9726-y

Keywords

Navigation