Journal of Solution Chemistry

, 40:1447 | Cite as

Conductivities of the Ternary Systems Y(NO3)3+La(NO3)3+H2O, La(NO3)3+Ce(NO3)3+H2O, La(NO3)3+Nd(NO3)3+H2O and Their Binary Subsystems at Different Temperatures

  • Yu-Feng Hu
  • Chuan-Wei Jin
  • Jin-Zhu Zhang
  • Shan Ling


Electrical conductivities were measured for the ternary systems Y(NO3)3+La(NO3)3+H2O, La(NO3)3+Ce(NO3)3+H2O, La(NO3)3+Nd(NO3)3+H2O, and their binary subsystems Y(NO3)3+H2O, La(NO3)3+H2O, Ce(NO3)3+H2O, and Nd(NO3)3+H2O at (293.15, 298.15 and 308.15) K. The measured conductivities were used to test the generalized Young’s rule and the semi-ideal solution theory. The comparison results show that the generalized Young’s rule and the semi-ideal solution theory can yield good predictions for the conductivities of the ternary electrolyte solutions, implying that the conductivities of aqueous solutions of (1:3 + 1:3) electrolyte mixtures can be well predicted from those of their constituent binary solutions by the simple equations.


Conductivity Rare earth nitrates Aqueous mixed solutions Conductivity prediction 





coefficients in Eq. 4


solute components


ionic strength


molality (mol⋅kg−1)


the number of experimental data


mole fraction


ionic strength fraction




function defined by Eq. 6


osmotic coefficient


function defined by Eq. 5



quantity in binary solutions at the same water activity as that of a mixed solution


quantity in binary solutions


quantity in binary solutions at the same ionic strength as that of a mixed solution





calculational quantity

Eq. i

prediction of Eq. 2 or Eq. 3


experimental quantity


component index



Supplementary material


  1. 1.
    Miller, D.G.: Binary mixing approximations and relations between specific conductance, molar conductance, equivalent conductance, and ionar conductance for mixtures. J. Phys. Chem. 100, 1220–1226 (1996) CrossRefGoogle Scholar
  2. 2.
    Hu, Y.F., Lee, H.: Prediction of viscosity of mixed electrolyte solutions based on the Eyring’s absolute rate theory and the semi-ideal hydration model. Electrochim. Acta 48, 1789–1796 (2003) CrossRefGoogle Scholar
  3. 3.
    Hu, Y.F.: Prediction of viscosity of mixed electrolyte solutions based on the Eyring’s absolute rate theory and the equations of Patwardhan and Kumar. Chem. Eng. Sci. 59, 2457–2464 (2004) CrossRefGoogle Scholar
  4. 4.
    Yang, J.Z., Liu, J.G., Tong, J., Guan, W., Fang, D.W., Yan, C.W.: Systematic study of the simple predictive approaches for thermodynamic and transport properties of multicomponent solutions. Ind. Eng. Chem. Res. 49, 7671–7677 (2010) CrossRefGoogle Scholar
  5. 5.
    Andrzej, A., Malgorzata, M.L.: Computation of electrical conductivity of multicomponent aqueous systems in wide concentration and temperature ranges. Ind. Eng. Chem. Res. 36, 1932–1943 (1997) CrossRefGoogle Scholar
  6. 6.
    Scatchard, G.: The speed of reaction in concentrated solutions and the mechanism of the inversion of sucrose. J. Am. Chem. Soc. 43, 2387–2406 (1921) CrossRefGoogle Scholar
  7. 7.
    Scatchard, G.: The hydration of sucrose in water solution as calculated from vapor-pressure measurements. J. Am. Chem. Soc. 43, 2406–2418 (1921) CrossRefGoogle Scholar
  8. 8.
    Stokes, R.H., Robinson, R.A.: Ionic hydration and activity in electrolyte solutions. J. Am. Chem. Soc. 70, 1870–1878 (1948) CrossRefGoogle Scholar
  9. 9.
    Robinson, R.A., Stokes, R.H.: Activity coefficients in aqueous solutions of sucrose, mannitol and their mixtures at 25 °C. J. Phys. Chem. 65, 1954–1958 (1961) CrossRefGoogle Scholar
  10. 10.
    Stokes, R.H., Robinson, R.A.: Interactions in aqueous nonelectrolyte solutions. I. Solute–solvent equilibria. J. Phys. Chem. 70, 2126–2130 (1966) CrossRefGoogle Scholar
  11. 11.
    Hu, Y.F.: The thermodynamics of nonelectrolyte systems at constant activities of any number of components. J. Phys. Chem. B 107, 13168–13177 (2003) CrossRefGoogle Scholar
  12. 12.
    Hu, Y.F., Fan, S.S., Liang, D.Q.: The semi-ideal solution theory for mixed ionic solutions at solid-liquid-vapor equilibrium. J. Phys. Chem. A 110, 4276–4284 (2006) CrossRefGoogle Scholar
  13. 13.
    Young, T.F., Wu, Y.C., Krawetz, A.A.: Thermal effects of the interactions between ions of like charge. Discuss. Faraday Soc. 24, 37–42 (1957) CrossRefGoogle Scholar
  14. 14.
    Hu, Y.F., Zhang, Z.X., Zhang, Y.H., Fan, S.S., Liang, D.Q.: Viscosity and density of the nonelectrolyte system mannitol + sorbitol + sucrose + H2O and its binary and ternary subsystems at 298.15 K. J. Chem. Eng. Data 51, 438–442 (2006) CrossRefGoogle Scholar
  15. 15.
    Hu, Y.F.: New Predictive equations for the specific and apparent molar heat capacities of multicomponent aqueous solutions conforming to the linear isopiestic relation. Bull. Chem. Soc. Jpn. 74, 47–52 (2001) CrossRefGoogle Scholar
  16. 16.
    Wu, Y.C., Koch, W.F., Zhong, E.C., Friedman, H.L.: The cross-square rule for transport in electrolyte mixtures. J. Phys. Chem. 92, 1692–1695 (1988) CrossRefGoogle Scholar
  17. 17.
    Hu, Y.F., Zhang, X.M., Li, J.G., Liang, Q.Q.: The semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions. J. Phys. Chem. B 112, 15376–15381 (2008) CrossRefGoogle Scholar
  18. 18.
    Spedding, F.H., Pikal, M.J., Ayers, B.O.: Apparent molal volumes of some aqueous rare earth chloride and nitrate solutions at 25 °C. J. Phys. Chem. 70, 2440–2449 (1966) CrossRefGoogle Scholar
  19. 19.
    Spedding, F.H., Cullen, P.F., Habenschuss, A.: Apparent molal volumes of some dilute aqueous rare earth salt solutions at 25 °C. J. Phys. Chem. 78, 1106–1110 (1974) CrossRefGoogle Scholar
  20. 20.
    Zdanovskii, A.B.: Regularities in the property variations of mixed solutions. Tr. Sol. Lab. Akad. Nauk SSSR 6, 5–70 (1936) Google Scholar
  21. 21.
    Hu, Y.F., Zhang, X.M., Jin, C.W., Peng, X.M.: The semi-ideal solution theory. 3. Extension to viscosity of multicomponent aqueous solutions. J. Solution Chem. 39, 1828–1844 (2010) CrossRefGoogle Scholar
  22. 22.
    Rard, J.A., Miller, D.G., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 4. La(NO3)3, Pr(NO3)3, and Nd(NO3)3. J. Chem. Eng. Data 24, 348–354 (1979) CrossRefGoogle Scholar
  23. 23.
    Rard, J.A., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 6. Eu(NO3)3, Y(NO3)3, and YCl3. J. Chem. Eng. Data 27, 454–461 (1982) CrossRefGoogle Scholar
  24. 24.
    Ruas, A., Simonin, J.P., Turq, P., Moisy, Ph.: Experimental determination of water activity for binary aqueous cerium(III) ionic solutions: application to an assessment of the predictive capability of the binding mean spherical approximation model. J. Phys. Chem. B 109, 23043–23050 (2005) CrossRefGoogle Scholar
  25. 25.
    Rard, J.A., Spedding, F.H.: Electrical conductances of some aqueous rare earth electrolyte solutions at 25 °C. III. The rare earth nitrates. J. Phys. Chem. 79, 257–262 (1975) CrossRefGoogle Scholar
  26. 26.
    Hu, Y.F., Peng, X.M., Jin, C.W., Liang, Y.G., Chu, H.D., Zhang, X.M.: The semi-ideal solution theory. 4. Applications to the densities and conductivities of the mixed electrolyte and nonelectrolyte solutions. J. Solution Chem. 39, 1597–1608 (2010) CrossRefGoogle Scholar
  27. 27.
    Hu, Y.F., Jin, C.W., Ling, S., Zhang, J.Z.: Densities of the ternary systems Y(NO3)3+Ce(NO3)3+H2O, Y(NO3)3+Nd(NO3)3+H2O, and Ce(NO3)3+Nd(NO3)3+H2O and their binary subsystems at different temperatures. J. Chem. Eng. Data 55, 5031–5035 (2010) CrossRefGoogle Scholar
  28. 28.
    Wang, Z.C., He, M., Wang, J., Li, J.L.: Modeling of aqueous 3–1 rare earth electrolytes and their mixtures to very high concentrations. J. Solution Chem. 35, 1137–1156 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yu-Feng Hu
    • 1
  • Chuan-Wei Jin
    • 1
  • Jin-Zhu Zhang
    • 1
  • Shan Ling
    • 1
  1. 1.State Key Laboratory of Heavy Oil Processing, High Pressure Fluid Phase Behavior and Property Research LaboratoryChina University of PetroleumBeijingChina

Personalised recommendations