Journal of Solution Chemistry

, 40:1473 | Cite as

Thermodynamic Approach for Predicting Actinide and Rare Earth Concentrations in Leachates from Radioactive Waste Glasses

  • Dhanpat Rai
  • Mikazu Yui
  • Akira Kitamura
  • Bernd Grambow


Studies aimed primarily at determining leach rates of different elements from doped glasses have resulted in computerized models for predicting leachate concentrations. However, leach rate related data should be limited to predicting the stability behavior of the glass matrix; the radionuclide release data based on these studies are empirical and are highly dependant on many variables and processes which have not been systematically evaluated and thus do not provide a reliable method of predicting leachate concentrations. A better approach is available for those elements that can readily form relatively insoluble solids during preparation of glass or glass/water interactions. This alternate approach relies on the experimental solubilities of pulverized doped glasses, in a wide range of well-controlled important variables such as pH and pe, and their comparisons at the given aqueous composition to predicted solubilities of known solid phases from the thermodynamic data. These comparisons are used to indirectly identify specific solubility-controlling solids in doped glass/water systems to determine scientifically defensible aqueous concentrations of different elements for any given groundwater composition, independent of glass dissolution kinetics and independent of time. This paper summarizes data available for the application of this alternate approach to reliably predict concentrations of thorium, uranium, neptunium, plutonium, and trivalent actinides and rare earth elements leachable from the doped glasses. The thermodynamic data, in addition to that reported in recent critical reviews, includes new data that were developed for the solubility products of Th3(PO4)4(s) and the solid solutions of trivalent actinides and rare earth hydroxides. Thermodynamic interpretations of the doped glass solubility data show specifically that tetravalent actinide hydrous/crystalline oxides and solid solutions of trivalent actinides and rare earths hydroxides in non-phosphate glasses and Th3(PO4)4(s) and MPO4(s), where M denotes trivalent actinides or rare earths, in phosphate-containing glasses are the dominant solubility-controlling solids. Needed future research in this area is briefly outlined.


Solubility Solubility-controlling solids Glass dissolution Radioactive glass Thorium Uranium Neptunium Plutonium Neodymium Rare earths 


  1. 1.
    Ribet, I., Gin, S., Godon, N., Jollivet, P., Minet, Y., Brambow, B., Abdelouas, A., Ferrand, K., Lemmens, K., Aertsens, M., Pirlet, V., Jacques, D., Crovisier, J.L., Aouad, G., Arth, A., Clement, A., Fritz, B., Morvan, G., Munier, I., Del Nero, M., Ozgumus, A., Curti, E., Luckscheiter, B., Schwyn, B.: Long-term behavior of glass: improving the glass source term and substantiating the basic hypotheses. Final technical report, Contract N FIKW-CT-2000-00007, European Commission (2004) Google Scholar
  2. 2.
    Grambow, B., Muller, R.: First-order dissolution rate law and the role of surface layers in glass performance assessment. J. Nucl. Mater. 298, 112–124 (2001) CrossRefGoogle Scholar
  3. 3.
    McGrail, B.P., Bacon, D.H., Icenhower, J.P., Mann, F.M., Puigh, R.J., Schaef, H.T., Mattigod, S.V.: Near-field performance assessment for a low-activity waste glass disposal system: laboratory testing to modeling results. J. Nucl. Mater. 298, 95–111 (2001) CrossRefGoogle Scholar
  4. 4.
    Advocat, T., Jollivet, P., Minet, Y., Luckscheiter, B., Grambow, B., Gens, R., Lemmens, K., Van Iseghem, P., Aertsens, M., Pirlet, V., Cruti, E.: Experimental and modelling studies to formulate a source term in representative geological disposal conditions. Final report EUR19120EN, European Commission (1999) Google Scholar
  5. 5.
    Ashida, T., Kohara, Y., Yui, M.: Migration behaviour of Pu released from Pu-doped glass in compacted bentonite. Radiochim. Acta 66/67, 359–362 (1994) Google Scholar
  6. 6.
    Bates, J.K., Ebert, W.L., Fischer, D.F., Gerding, T.J.: The reaction of reference commercial nuclear waste glasses during gamma irradiation in a saturated tuff environment. J. Mater. Res. 3, 576–597 (1988) CrossRefGoogle Scholar
  7. 7.
    Bosbach, D., Luckscheiter, B., Brendebach, B., Denecke, M.A., Finck, N.: High level nuclear waste glass corrosion in synthetic clay pore solution and retention of actinides in secondary phases. J. Nucl. Mater. 385, 456–460 (2009) CrossRefGoogle Scholar
  8. 8.
    Kienzler, B., Luckscheiter, B., Wilhelm, S.: Waste form corrosion modeling: comparison with experimental results. Waste Manag. 21, 741–752 (2001) CrossRefGoogle Scholar
  9. 9.
    Kohara, Y., Ashida, T., Yui, M.: Particle size distribution of colloids released in leachate from fully radioactive waste glass. J. Nucl. Sci. Technol. 34, 1107–1109 (1997) CrossRefGoogle Scholar
  10. 10.
    Menard, O., Advocat, T., Ambrosi, J.P., Michard, A.: Behaviour of actinides (Th, U, Np and Pu) and rare earths (La, Ce and Nd) during aqueous leaching of a nuclear glass under geological disposal conditions. Appl. Geochem. 13, 105–126 (1998) CrossRefGoogle Scholar
  11. 11.
    Miyahara, K., Ashida, T., Yusa, Y., Sasaki, N., Tsunoda, N.: Static leaching of actinides and fission products from fully radioactive waste glass of HLLW generated in Tokai reprocessing plant. Mater. Res. Soc. Symp. Proc. 127, 121–128 (1989) CrossRefGoogle Scholar
  12. 12.
    Nakayama, S., Banba, T.: Release of neptunium from neptunium-doped borosilicate waste glass. J. Nucl. Sci. Technol. 26, 607–615 (1989) CrossRefGoogle Scholar
  13. 13.
    Pierce, E.M., McGrail, B.P., Martin, P.F., Marra, J., Arey, B.W., Geiszler, K.N.: Accelerated weathering of high-level and plutonium-bearing lanthanide borosilicate waste glasses under hydraulically unsaturated conditions. Appl. Geochem. 22, 1841–1859 (2007) CrossRefGoogle Scholar
  14. 14.
    Pirlet, V.: Overview of actinides (Np, Pu, Am) and Tc release from waste glasses: influence of solution composition. J. Nucl. Mater. 298, 47–54 (2001) CrossRefGoogle Scholar
  15. 15.
    Wellman, D.M., Icenhower, J.P., Weber, W.J.: Elemental dissolution study of Pu-bearing borosilicate glasses. J. Nucl. Mater. 340, 149–162 (2005) CrossRefGoogle Scholar
  16. 16.
    Zimmer, P., Bohnert, E., Bosbach, D., Kim, J.I., Althaus, E.: Formation of secondary phases after long-term corrosion of simulated HLW glass in brine solutions at 190°C. Radiochim. Acta 90, 529–535 (2002) CrossRefGoogle Scholar
  17. 17.
    Grenthe, I., Fuger, J., Konings, R.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., Wanner, H.: Chemical Thermodynamics of Uranium. Amsterdam, Elsevier (1992) Google Scholar
  18. 18.
    Guillaumont, R., Fanghanel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., Rand, M.H.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium. Amsterdam, Elsevier (2003) Google Scholar
  19. 19.
    Lemire, R.J., Fuger, J., Nitsche, H., Potter, P.E., Rand, M.H., Rydberg, J., Spahiu, K., Sullivan, J.C., Ullman, W.J., Vitorge, P., Wanner, H.: Chemical Thermodynamics of Neptunium and Plutonium. Amsterdam, Elsevier (2001) Google Scholar
  20. 20.
    Rand, M.H., Fuger, J., Grenthe, I., Neck, V., Rai, D.: Chemical Thermodynamics of Thorium. Nuclear Energy Agency, Organization for Economic Co-Operation and Development (2008) Google Scholar
  21. 21.
    Silva, R.J., Bidoglio, G., Rand, M., Robouch, P.B., Wanner, H., Puigdomenech, I.: Chemical Thermodynamics of Americium. Amsterdam, Elsevier (1995) Google Scholar
  22. 22.
    Rai, D., Yui, M., Hess, N.J., Felmy, A.R., Moore, D.A.: Thorium reactions in borosilicate-glass/water systems. Radiochim. Acta 93, 443–455 (2005) CrossRefGoogle Scholar
  23. 23.
    Felmy, A.R., Rai, D., Hartley, S.A., LeGore, V.L.: Solubility and Leaching of Radionuclides in Site Decommissioning Management Plan (SDMP) Slags. NUREG /CR-6632. The U.S. Nuclear Regulatory Commission, Washington (2002) Google Scholar
  24. 24.
    Rai, D., Moore, D.A., Oakes, C.S., Yui, M.: Thermodynamic model for the solubility of thorium dioxide in the Na+–Cl–OH–H2O system at 23 and 90 degrees C. Radiochim. Acta 88, 297–306 (2000) CrossRefGoogle Scholar
  25. 25.
    Morris, M.C.: Standard X-ray diffraction powder patterns. Section 20. Data for 71 substances. Vol. 25 NBS monograph US Dept. of Commerce, National Bureau of Standards Washington, DC (1984) Google Scholar
  26. 26.
    Mishra, R.K., Sengupta, P., Kaushik, C.P., Tyagi, A.K., Kale, G.B., Raj, K.: Studies on immobilization of thorium in barium borosilicate glass. J. Nucl. Mater. 360, 143–150 (2007) CrossRefGoogle Scholar
  27. 27.
    Ferriss, E.D.A., Ewing, R.C., Becker, U.: Simulation of thermodynamic mixing properties of actinide-containing zircon solid solutions. Am. Mineral. 95, 229–241 (2010) CrossRefGoogle Scholar
  28. 28.
    Rai, D., Yui, M., Moore, D.A., Lumetta, G.J., Rosso, K.M., Xia, Y., Felmy, A.R., Skomurski, F.N.: Thermodynamic model for ThO2(am) solubility in alkaline-silica solutions. J. Solution Chem. 37, 1725–1746 (2008) CrossRefGoogle Scholar
  29. 29.
    Altmaier, M., Neck, V., Fanghanel, T.: Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca–M(IV)–OH complexes. Radiochim. Acta 96, 541–550 (2008) CrossRefGoogle Scholar
  30. 30.
    Serne, R.J., Rai, D., Martin, P.F., Felmy, A.R., Rao, L., Ueta, S.: Leachability of Nd, U, Th, and Sr from cements in a CO2 free atmosphere. In: Mat. Res. Soc. Symp. Proc. 1996 Materials Research Society, vol. 412, pp. 459–467 (1996) Google Scholar
  31. 31.
    Abdelouas, A., Crovisier, J.L., Lutze, W., Grambow, B., Dran, J.C., Muller, R.: Surface layers on a horosilicate nuclear waste glass corroded in MgCl2 solution. J. Nucl. Mater. 240, 100–111 (1997) CrossRefGoogle Scholar
  32. 32.
    Baglan, N., Fourest, B., Guillaumont, R., Blain, G., Le Du, J.-F., Genet, M.: Solubility of thorium orthophosphate. New J. Chem. 18, 809–816 (1994) Google Scholar
  33. 33.
    Chukhlantsev, V.G., Stepanov, S.I.: Solubility of uranyl and thorium phosphates. Russ. J. Inorg. Chem. 1, 135–141 (1956) Google Scholar
  34. 34.
    Rai, D., Felmy, A.R.: Mechanistic data and approach for predicting leachate concentrations. 1991, PNC PA 0865 91–001, Power Reactor and Nuclear Fuel Development Corporation of Japan (currently Japan Atomic Energy Agency), Tokai, Japan Google Scholar
  35. 35.
    Luckscheiter, B., Nesovic, M.: HLW-glass dissolution and co-precipitation studies. Mater. Res. Soc. Symp. Proc. 932, 361–368 (2006) CrossRefGoogle Scholar
  36. 36.
    Xia, Y., Rao, L., Rai, D., Felmy, A.R.: Determining the distribution of Pu, Np, and U oxidation states in dilute NaCl and synthetic brine solutions. J. Radioanal. Nucl. Chem. 250, 27–37 (2011) Google Scholar
  37. 37.
    Rai, D., Yui, M., Moore, D.A.: Solubility and solubility product at 22 °C of UO2(c) precipitated from aqueous U(IV) solutions. J. Solution Chem. 32, 1–17 (2003) CrossRefGoogle Scholar
  38. 38.
    Rai, D., Strickert, R.G., McVay, G.L.: Neptunium concentrations in solutions contacting actinide-doped glass. Nucl. Sci. Technol. 58, 69–76 (1982) Google Scholar
  39. 39.
    Rai, D., Ryan, J.L.: Crystallinity and solubility of Pu(IV) oxide and hydroxide in aged aqueous suspensions. Radiochim. Acta 30, 213–211–216 (1982) Google Scholar
  40. 40.
    Rai, D., Hess, N.J., Yui, M., Felmy, A.R., Moore, D.A.: Thermodynamics and solubility of (UxNp1−x)O2(am) solid solution in the carbonate system. Radiochim. Acta 92, 527–535 (2004) CrossRefGoogle Scholar
  41. 41.
    Strickert, R.G., Rai, D.: Predicting Pu concentrations in solutions contacting geologic materials. In: Scientific Basis for Nuclear Waste Management. North-Holland, New York (1982) Google Scholar
  42. 42.
    Kuroha, M., Shibutani, T., Okazaki, M., Inui, S., Yamada, K., Yui, M.: Study on dissolution behavior of plutonium from Pu-doped glass. JNC TN8410 98–001, Japan Atomic Energy Agency, Tokai (in Japanese with English abstract) (1988) Google Scholar
  43. 43.
    Rai, D., Serne, R.J., Moore, D.A.: Solubility of plutonium compounds and their behavior in soils. Soil Sci. Soc. Am. J. 44, 490–495 (1980) CrossRefGoogle Scholar
  44. 44.
    Rai, D.: Solubility product of Pu(IV) hydrous oxide and equilibrium constants of Pu(IV)/Pu(V), Pu(IV)/Pu(VI), and Pu(V)/Pu(VI) couples. Radiochim. Acta 35, 97–108 (1984) Google Scholar
  45. 45.
    Neck, V., Altmaier, M., Seibert, A., Yun, J.I., Marquardt, C.M., Fanghanel, T.: Solubility and redox reactions of Pu(IV) hydrous oxide: evidence for the formation of PuO2+x(s, hyd.). Radiochim. Acta 95, 193–207 (2007) CrossRefGoogle Scholar
  46. 46.
    Rai, D., Gorby, Y.A., Fredrickson, J.K., Moore, D.A., Yui, M.: Reductive dissolution of PuO2(am): the effect of Fe(II) and hydroquinone. J. Solution Chem. 31, 433–453 (2002) CrossRefGoogle Scholar
  47. 47.
    Rai, D., Strickert, R.G., Ryan, J.L.: Alpha radiation induced production of HNO3 during dissolution of Pu compounds. Inorg. Nucl. Chem. Lett. 16, 551–555 (1981) CrossRefGoogle Scholar
  48. 48.
    Rai, D., Felmy, A.R., Fulton, R.W., Ryan, J.L.: Aqueous chemistry of Nd in borosilicate-glass/water systems. In: Performance Assessment Center for Engineered Barriers (PACE) Program (B.P. McGrail, program manager) PNC ZA0865 92-001. Power Reactor and Nuclear Fuel Development Corporation (currently, Japan Atomic Energy Agency), Tokai-mura. p. 3.B.1–3.B26 (1992) Google Scholar
  49. 49.
    Rai, D., Schramke, J.A., Moore, D.A., McVay, G.L.: Americium concentrations in solutions contacting Am-doped glass. Nucl. Sci. Technol. 75, 350–355 (1986) Google Scholar
  50. 50.
    Rai, D., Felmy, A.R., Fulton, R.W., Ryan, J.L.: Aqueous chemistry of Nd in borosilicate-glass/water systems. Radiochim. Acta 58, 9–16 (1992) Google Scholar
  51. 51.
    Grambow, B.: The role of metal ion solubility in leaching of nuclear waste glasses. Mater. Res. Soc. Symp. Proc. 11, 93–102 (1982) CrossRefGoogle Scholar
  52. 52.
    Maurer, C., Clark, D.E., Hench, L.L., Grambow, B.: Solubility effects on the corrosion of nuclear defense waste glasses. Nucl. Chem. Waste Manag. 5, 193–201 (1985) CrossRefGoogle Scholar
  53. 53.
    Strachan, D.M., Krupka, K.M., Grambow, B.: Solubility interpretations of leach tests on nuclear waste glass. Nucl. Chem. Waste Manag. 5, 87–99 (1984) CrossRefGoogle Scholar
  54. 54.
    Rai, D., Felmy, A.R., Fulton, R.W.: Solubility and ion activity product of AmPO4xH2O(am). Radiochim. Acta 56, 7–14 (1992) Google Scholar
  55. 55.
    Rai, D., Felmy, A.R., Yui, M.: Thermodynamic model for the solubility of NdPO4(c) in the aqueous Na+–H+\(\mathrm{H}_{2}\mathrm{PO}_{4}^{-}\)\(\mathrm{HPO}_{4}^{2-}\)–OH–Cl–H2O system. J. Radioanal. Nucl. Chem. 256, 37–43 (2003) CrossRefGoogle Scholar
  56. 56.
    Rai, D., Moore, D.A., Felmy, A.R., Rosso, K.M., Bolton, H.J.: PuPO4(cr, hyd.) solubility product and Pu3+ complexes with phosphate and ethylenediaminetetraacetic acid. J. Solution Chem. 39, 778–807 (2010) CrossRefGoogle Scholar
  57. 57.
    Schaller, T., Stebbins, J.F., Wilding, M.C.: Cation clustering and formation of free oxide ions in sodium and potassium lanthanum silicate glasses: nuclear magnetic resonance and Raman spectroscopic findings. J. Non-Cryst. Solids 243, 146–157 (1999) CrossRefGoogle Scholar
  58. 58.
    Wilding, M., Badyal, Y., Navrotsky, A.: The local environment of trivalent lanthanide ions in sodium silicate glasses: A neutron diffraction study using isotopic substitution. J. Non-Cryst. Solids 353, 4792–4800 (2007) CrossRefGoogle Scholar
  59. 59.
    Rao, L., Rai, D., Felmy, A.R.: Solubility of Nd(OH)3(c) in 0.1 M NaCl aqueous solution at 25 °C and 90 °C. Radiochim. Acta 72, 151–155 (1996) Google Scholar
  60. 60.
    Bois, L., Barre, N., Guittet, M.J., Guillope, S., Trocellier, P., Gautier-Soyer, M., Verdier, P., Laurent, Y.: Aqueous corrosion of lanthanum aluminosilicate glasses: influence of inorganic anions. J. Nucl. Mater. 300, 141–150 (2002) CrossRefGoogle Scholar
  61. 61.
    Jollivet, P., Den Auwer, C., Delaye, J.M., Simoni, E.: Evolution of the local environment of lanthanum during simplified SON68 glass leaching. J. Non-Cryst. Solids 353, 344–353 (2007) CrossRefGoogle Scholar
  62. 62.
    Jollivet, P., Lopez, C., Den Auwer, C., Simoni, E.: Evolution of the local environment of cerium and neodymium during simplified SON68 glass alteration. J. Nucl. Mater. 346, 253–265 (2005) CrossRefGoogle Scholar
  63. 63.
    Gavarini, S., Trocellier, P., Matzen, G., Vaills, Y., Carrot, F., Bois, L.: Behaviour of lanthanide aluminosilicate glass in water: preliminary results. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 181, 413–418 (2001) CrossRefGoogle Scholar
  64. 64.
    Grambow, B., Muller, R., Rother, A., Lutze, W.: Release of rare-earth elements and uranium from glass in low pH high saline brines. Radiochim. Acta 52–53, 501–506 (1991) Google Scholar
  65. 65.
    Bois, L., Guittet, M.J., Barre, N., Trocellier, P., Guillope, S., Gautier, M., Verdier, P., Laurent, Y.: Aqueous alteration of lanthanum alumino-silicate glasses. J. Non-Cryst. Solids 276, 181–194 (2000) CrossRefGoogle Scholar
  66. 66.
    Rother, A., Lutze, W., Schubertbischoff, P.: Characterization of lanthanoid phases formed upon glass dissolution in salt-solutions. Mater. Res. Soc. Symp. Proc. 257, 57–64 (1991) CrossRefGoogle Scholar
  67. 67.
    Bosbach, D., Rabung, T., Brandt, F., Fanghanel, T.: Trivalent actinide coprecipitation with powellite (CaMoO4): secondary solid solution formation during HLW borosilicate-glass dissolution. Radiochim. Acta 92, 639–643 (2004) CrossRefGoogle Scholar
  68. 68.
    Bradley, D.J., Harvey, C.O., Turcotte, R.P.: Leaching of Actinides and Technetium from Simulated High-Level Waste Glass. PNL-3152, Pacific Northwest National Laboratory, Richland, WA (1979) Google Scholar
  69. 69.
    Mellinger, G.B., Daniel, J.L.: Approved Reference and Testing Materials for Use in Nuclear Waste Management Research and Development Programs, PNL-4955-2. Pacific Northwest National Laboratory, Richland (1984) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dhanpat Rai
    • 1
  • Mikazu Yui
    • 2
  • Akira Kitamura
    • 2
  • Bernd Grambow
    • 3
  1. 1.Rai Enviro-ChemYachatsUSA
  2. 2.Japan Atomic Energy AgencyTokaiJapan
  3. 3.SUBATECH/Ecole des Mines de NantesUniversité de Nantes IN2P3/CNRSNantesFrance

Personalised recommendations