Journal of Solution Chemistry

, Volume 40, Issue 7, pp 1317–1340 | Cite as

A Computer Simulation of the Electronic Structure of Leucine in Aqueous Solution

  • X. Wang
  • H. Zheng


In order to obtain the electronic structure of leucine (Leu) in aqueous solution, we studied three systems: Leu+7H2O, Leu+8H2O and Leu+9H2O. The results indicated that the system Leu+8H2O was the only choice which was both acceptable and doable: its computational effort was affordable, and it could simulate a main part of the solvent effect on the electronic structure of Leu in solution. Based on the system Leu+8H2O, all-electron, ab initio calculations were performed to construct an equivalent potential of water for the electronic structure of Leu with dipoles. The results showed that the main effect of water on the electronic structure of Leu was raising the occupied states about 0.0824 Ry on average, and broadening the energy gap by 11%. The water effect on the electronic structure of Leu could be well simulated by the dipole potential. The obtained equivalent potential can be applied directly to the electronic structure calculation of proteins in solution.


Leucine Electronic structure Water Free cluster calculation Self-consistent cluster-embedding calculation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yang, W.T.: Direct calculation of electron density in density-functional theory. Phys. Rev. Lett. 66, 1438–1441 (1991) CrossRefGoogle Scholar
  2. 2.
    Cortona, P.: Self-consistently determined properties of solids without band-structure calculations. Phys. Rev. B 44, 8454–8458 (1991) CrossRefGoogle Scholar
  3. 3.
    Galli, G., Parrinello, M.: Large scale electronic structure calculations. Phys. Rev. Lett. 69, 3547–3550 (1992) CrossRefGoogle Scholar
  4. 4.
    Mauri, F., Galli, G., Car, R.: Orbital formulation for electronic-structure calculation with linear system-size scaling. Phys. Rev. B 47, 9973–9976 (1993) CrossRefGoogle Scholar
  5. 5.
    Li, X.P., Nunes, R.W., Vanderbilt, D.: Density-matrix divide-and-conquer approach for electronic-structure calculations. Phys. Rev. B 47, 10891–10894 (1993) CrossRefGoogle Scholar
  6. 6.
    Ordejon, P., Drabold, D.A., Martin, R.M., Grumbach, M.P.: Linear system-size scaling methods for electronic-structure calculations. Phys. Rev. B 51, 1456–1476 (1995) CrossRefGoogle Scholar
  7. 7.
    Yang, W.T., Lee, T.S.: A density-matrix divide-and-conquer approach for electronic structure calculations of large molecules. J. Chem. Phys. 103, 5674–5678 (1995) CrossRefGoogle Scholar
  8. 8.
    Kohn, W.: Density functional and density matrix method scaling linearly with the number of the atoms. Phys. Rev. Lett. 76, 3168–3171 (1996) CrossRefGoogle Scholar
  9. 9.
    Ordejón, P., Artacho, P.E., Soler, J.M.: Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B 53, 10441–10444 (1996) CrossRefGoogle Scholar
  10. 10.
    Baer, R., Gordon, M.H.: Sparsity of the density matrix in Kohn–Sham density functional theory and an assessment of linear system-size scaling methods. Phys. Rev. Lett. 79, 3962–3965 (1997) CrossRefGoogle Scholar
  11. 11.
    Klessinger, M., Mcweeny, R.: Self-consistent group calculations on polyatomic molecules. I. Basic theory with an application to methane. J. Chem. Phys. 42, 3343–3354 (1965) CrossRefGoogle Scholar
  12. 12.
    Li, J.B., McWeeny, R.: VB2000: Pushing valence bond theory to new limits. Int. J. Quant. Chem. 89, 208–216 (2001) CrossRefGoogle Scholar
  13. 13.
    Wesolowski, T.A., Warshel, A.: Frozen density fucntional approach for ab initio calculations of solvated molecules. J. Phys. Chem. 97, 8050–8053 (1993) CrossRefGoogle Scholar
  14. 14.
    Wesolowski, T.A.: One-electron equations for embedded electron density: challenge for theory and practical payoffs in multi-level modeling of soft condensed matter. In: Leszczynski, J. (ed.) Computational Chemistry: Reviews of Current Trends, pp. 1–82. World Scientific, Singapore (2006) CrossRefGoogle Scholar
  15. 15.
    Govind, N., Wang, Y.A., Da Silva, J.R., Carter, E.A.: Accurate ab initio energetics of extended systems via explicit correlation embedded in a density functional environment. Chem. Phys. Lett. 295, 129–134 (1998) CrossRefGoogle Scholar
  16. 16.
    Zheng, H.P.: One-electron approach and the theory of the self-consistent cluster-embedding calculation method. Phys. Lett. A 226, 223–230 (1997) CrossRefGoogle Scholar
  17. 17.
    Zheng, H.P.: Self-consistent cluster-embedding calculation method and the calculated electronic structure of NiO. Phys. Rev. B 48, 14868–14883 (1993) CrossRefGoogle Scholar
  18. 18.
    Zheng, H.P.: Electronic structure of CoO. Physica B 212, 125–138 (1995) CrossRefGoogle Scholar
  19. 19.
    Zheng, H.P., Rao, B.K., Khanna, S.N.: Electronic structure and binding energies of hydrogen-decorated vacancies in Ni. Phys. Rev. B 55, 4174–4181 (1997) CrossRefGoogle Scholar
  20. 20.
    Zheng, H.P., Wang, Y., Ma, G.: Electronic structure of LaNi5 and its hydride LaNi5H7. Eur. Phys. J. B 29, 61–69 (2002) CrossRefGoogle Scholar
  21. 21.
    He, J., Zheng, H.P.: The electronic structure of GaN and a single Ga-vacancy in GaN crystal. Acta Phys. Sin. 51, 2580–2588 (2002) Google Scholar
  22. 22.
    Lin, S.J., Zheng, H.P.: Electronic structure of the surface of LaNi5 crystal. Acta Phys. Sin. 54, 4680–4687 (2005) Google Scholar
  23. 23.
    Zheng, H.P., Lin, S.J.: First-principles calculation of LaNi5 surface. J. Phys. Conf. Ser. 29, 129–140 (2006) CrossRefGoogle Scholar
  24. 24.
    Zheng, H.P.: Electronic structure of trypsin inhibitor from squash seeds in aqueous solution. Phys. Rev. E 62, 5500–5508 (2000) CrossRefGoogle Scholar
  25. 25.
    Zheng, H.P.: First principle ab initio calculation of the electronic structure of protein molecule. Prog. Phys. 20, 291–300 (2000) Google Scholar
  26. 26.
    Zheng, H.P.: Ab initio calculations of the electronic structures and biological functions of protein molecules. Mod. Phys. Lett. B 16, 1151–1162 (2002) CrossRefGoogle Scholar
  27. 27.
    Zheng, H.P.: Electronic structures of Ascaris trypsin inhibitor in solution. Phys. Rev. E 68, 051908 (2003) CrossRefGoogle Scholar
  28. 28.
    Sato, F., Yoshihiro, T., Era, M., Kashiwagi, H.: Calculation of all-electron wavefunction of hemoprotein cytochrome c by density functional theory. Chem. Phys. Lett. 341, 645–651 (2001) CrossRefGoogle Scholar
  29. 29.
    Yoshihiro, T., Sato, F., Kashiwagi, H.: Distributed parallel processing by using the object-oriented technology in ProteinDF program for all-electron calculations on proteins. Chem. Phys. Lett. 346, 313–321 (2001) CrossRefGoogle Scholar
  30. 30.
    Lazaridis, T., Karplus, M.: Effective energy function for proteins in solution. Proteins 35, 133–152 (1999) CrossRefGoogle Scholar
  31. 31.
    Lazaridis, T., Karplus, M.: Discrimination of the native from misfolded protein models with an energy function including implicit solvation. J. Mol. Biol. 288, 477–487 (1998) CrossRefGoogle Scholar
  32. 32.
    Onsager, L.: Electric moment of molecules in liquids. J. Am. Chem. Soc. 58, 1486–1493 (1936) CrossRefGoogle Scholar
  33. 33.
    Klamt, A., Schuurmann, G.: COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2, 799–805 (1993) Google Scholar
  34. 34.
    Guo, H., Karplus, M.: Solvent influence on the stability of the peptide hydrogen bond: a supramolecular cooperative effect. J. Phys. Chem. 98, 7104–7105 (1994) CrossRefGoogle Scholar
  35. 35.
    Schaefer, M., Karplus, M.: A comprehensive analytical treatment of continuum electrostatics. J. Phys. Chem. 100, 1578–1599 (1996) CrossRefGoogle Scholar
  36. 36.
    Eckert, F., Klamt, A.: Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE J. 48, 369–385 (2002) CrossRefGoogle Scholar
  37. 37.
    Foresman, J.B., Keith, T.A., Wiberg, K.B.: Solvent effects. 5. Influence of cavity shape truncation of electrostatics, and electron correlation on ab initio reaction field calculations. J. Phys. Chem. 100, 16098–16104 (1996) CrossRefGoogle Scholar
  38. 38.
    Wang, X., Zheng, H., Li, C.: The equivalent potential of water molecules for electronic structure of cysteine. Eur. Phys. J. B 52, 255–263 (2006) CrossRefGoogle Scholar
  39. 39.
    Li, C.J., Zheng, H.P., Wang, X.M.: The equivalent potential of water molecules for electronic structure of lysine. Sci. China Ser. G 50, 15–30 (2007) CrossRefGoogle Scholar
  40. 40.
    Li, C.J., Zheng, H.P., Wang, X.M.: The equivalent potential of water molecules for the electronic structure of histidine. J. Phys., Condens. Matter 19, 116102 (2007) CrossRefGoogle Scholar
  41. 41.
    Zhang, T., Zheng, H., Yan, S.: Equivalent potential of water molecules for electronic structure of glutamic acid. J. Comput. Chem. 28, 1848–1857 (2007) CrossRefGoogle Scholar
  42. 42.
    Yan, S., Zheng, H., Zhang, T.: The equivalent potential of water molecules for electronic structure of alanine. Mol. Phys. 106, 1427–1439 (2008) CrossRefGoogle Scholar
  43. 43.
    Zhang, T., Zheng, H., Yan, S.: Equivalent potential of water for electronic structure of aspartic acid. J. Comput. Chem. 29, 1780–1787 (2008) CrossRefGoogle Scholar
  44. 44.
    Wang, X.R., Zheng, H.P.: Simulation of water potential for the electronic structure of serine. Chin. Phys. B 18, 1968–1978 (2009) CrossRefGoogle Scholar
  45. 45.
    Shen, X., Gao, Y., Zheng, H.: The equivalent dipole potential of water for the electronic structure of threonine. Mol. Phys. 107, 1393–1405 (2009) CrossRefGoogle Scholar
  46. 46.
    Gao, Y., Shen, X., Zheng, H.: Equivalent potential of water for electronic structure of asparagines. Int. J. Quant. Chem. 110, 925–938 (2010) Google Scholar
  47. 47.
    Peng, M., Zheng, H.: Equivalent potential of water for electronic structure of glycine. J. Mol. Model. 17, 111–124 (2011) CrossRefGoogle Scholar
  48. 48.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964) CrossRefGoogle Scholar
  49. 49.
    Kohn, W., Sham, L.: Self-consistent equations including exchange and correlation effects. J. Phys. Rev. A 140, 1133–1138 (1965) CrossRefGoogle Scholar
  50. 50.
    Von Barth, U., Hedin, L.: A local exchange-correlation potential for the spin polarized case: I. J. Phys. C 5, 1629–1642 (1972) CrossRefGoogle Scholar
  51. 51.
    Rajagopal, A.K., Singhal, S., Kimball, J.: (unpublished) In: G.I. Prigogine, S.A. Rice (eds.) Advance in Chemical Physics. Wiley, New York, pp. 59–153 (1979) Google Scholar
  52. 52.
    van Duijneveldt, F.B.: IBM J. Res. Dev. 945, 16437 (1971) Google Scholar
  53. 53.
    Lie, G.C., Clementi, E.: Study of the electronic structure of molecules. XXI. Correlation energy corrections as a functional of the Hartree–Fock density and its application to the hydrides of the second row atoms. J. Chem. Phys. 60, 1275–1287 (1974) CrossRefGoogle Scholar
  54. 54.
    Poirier, R.A., Daudel, R., Mezey, P.G., Csizmadia, I.G.: Ab initio calculations on sulfur-containing compounds. I. Uniform quality basis sets for sulfur: total energies and geometries of H2S. Int. J. Quant. Chem. 21, 799–811 (1982) CrossRefGoogle Scholar
  55. 55.
    Huzinaga, S.: Gaussian-type functions for polyatomic systems. I. J. Chem. Phys. 42, 1293–1302 (1965) CrossRefGoogle Scholar
  56. 56.
    Poirier, R., Kari, R., Csizmadia, I.G.: Handbook of Gaussian Basis Sets. Elsevier, New York (1985) Google Scholar
  57. 57.
    Chen, H.: Electronic structure of clusters: Applications to high-Tc superconductors. Ph.D. dissertation, Louisiana State University, USA (1988) Google Scholar
  58. 58.
    Zheng, H.: Self-consistent cluster-embedding calculation method and the electronic structure of NiO and CoO. Ph.D. dissertation, Louisiana State University, USA (1993) Google Scholar
  59. 59.
    Chen, H., Callaway, J., Misra, P.K.: Electronic structure of Cu–O chains in the high-Tc superconductor YBa2Cu3O7. Phys. Rev. B, Condens. Matter Mater. Phys. 38, 195–203 (1988) CrossRefGoogle Scholar
  60. 60.
    Chen, H., Callaway, J.: Local electronic structure and magnetism of 3d transition-metal impurities (Cr, Mn, Fe, Co, and Ni) in La2−xSrxCuO4. Phys. Rev. B 44, 2289–2296 (1991) CrossRefGoogle Scholar
  61. 61.
    Zheng, H., He, J.: Limitations of conventional one-electron approximation methods. J. Tongji Med. Univ. 29, 593–597 (2001) Google Scholar
  62. 62.
    Xu, W.H., Zheng, H.P.: Theoretic calculations of Co and Ni clusters with different sizes. J. Tongji Med. Univ. 31, 374–378 (2003) Google Scholar
  63. 63.
    Lin, S.J., Zheng, H.P.: Electronic structure of new oxygen molecule O4. J. Tongji Med. Univ. 32, 551–555 (2004) Google Scholar
  64. 64.
    Hao, J.A., Zheng, H.P.: Theoretical calculation of structures and properties of Ga6N6 cluster. Acta Phys. Sin. 53, 1044–1049 (2004) Google Scholar
  65. 65.
    Zheng, H.P., Hao, J.A.: Ab initio study of the electronic properties of the planar Ga5N5 cluster. Chin. Phys. 14, 529–532 (2005) CrossRefGoogle Scholar
  66. 66.
    Guillot, B.: A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq. 101, 219–260 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Physics DepartmentTongji UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Special Artificial Microstructure Materials and TechnologyShanghaiChina

Personalised recommendations