Journal of Solution Chemistry

, Volume 40, Issue 6, pp 1041–1054 | Cite as

Stabilities and Coordination Modes of α-Alaninephosphonic Acid in Copper(II) Heteroligand Complexes with Ethylenediamine, Diethylenetriamine or N,N,N′,N′,N″-Pentamethyldiethylene Triamine in Aqueous Solution

  • A. Kamecka
  • B. Kurzak
  • J. Jezierska
  • A. Woźna
Open Access


Solution equilibrium studies on Cu2+–L1–L2 ternary systems have been performed by pH-potentiometry, UV–Vis spectrophotometry and EPR methods (L1 corresponds to polyamines such as ethylenediamine (en), diethylenetriamine (dien), or N,N,N′,N′,N″-pentamethyldiethylenetriamine (Me5dien) and L2 represents 1-aminoethylphosphonic acid (α-alaninephosphonic acid)). The obtained results suggest the formation of heteroligand complexes with [Cu(L1)(α-Ala(P))] stoichiometry in all studied systems. Additionally, in the system with en the [Cu(en)(α-Ala(P))H−1] species is formed in basic solution. Our spectroscopic results indicate tetragonal geometry for the [Cu(en)(α-Ala(P))] species, geometry slightly deviated from square pyramidal for the [Cu(dien)(α-Ala(P))] complex and strongly deviated from square pyramidal towards trigonal bipyramidal for the [Cu(Me5dien)(α-Ala(P))] species. The coordination modes in these heteroligand complexes are discussed.


Copper(II) complexes Heteroligand complexes Aminophosphonic acids EPR Vis spectroscopy Potentiometry Equilibria Stability constants Polyamines Five-coordinate complexes 


  1. 1.
    Kamecka, A., Kurzak, B., Jezierska, J., Woźna, A., Broda, M.: Stabilities and coordination modes of glycinephosphonic acid in copper(II) heteroligand complexes with ethylenediamine, diethylenetriamine or N,N,N′,N′,N″-pentamethyldiethylene triamine in aqueous solution. Struct. Chem. 21, 347–355 (2010) CrossRefGoogle Scholar
  2. 2.
    Gran, G.: Determination of the equivalent point in potentiometric titrations. Acta Chem. Skand. 4, 559–577 (1950) CrossRefGoogle Scholar
  3. 3.
    Molina, M., Melios, C., Tognolli, J.O., Luchiari, L.C., Jafelicci, M. Jr.: A simple and accurate evaluation of hydrogen-ion concentrations in aqueous solutions of fixed ionic strength. J. Electroanal. Chem. 105, 237 (1979) CrossRefGoogle Scholar
  4. 4.
    Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996) CrossRefGoogle Scholar
  5. 5.
    Kurzak, B., Kroczewska, D., Jezierska, J.: Ternary copper(II) complexes with diethylenetriamine and α−(or β-) alaninehydroxamic acids in water solution. Polyhedron 17, 1831–1841 (1998) CrossRefGoogle Scholar
  6. 6.
    Kurzak, B., Kamecka, A., Bogusz, K., Jezierska, J.: Unexpected formation of the copper(II) dinuclear mixed-ligand species in the ternary system of N,N,N′,N′,N″-pentamethyldiethylenetriamine with methionine- or histidinehydroxamic acids in aqueous solution. Polyhedron 26, 4345–4353 (2007) CrossRefGoogle Scholar
  7. 7.
    Kurzak, B., Bogusz, K., Kroczewska, D., Jezierska, J.: Mixed-ligand copper(II) complexes with diethylenetriamine and histidine- or methioninehydroxamic acids in water solution. Polyhedron 20, 2627–2636 (2001) CrossRefGoogle Scholar
  8. 8.
    Kurzak, B., Kamecka, A., Bogusz, K., Jezierska, J.: Coordination modes of histidine- or methioninehydroxamic acids in copper(II) mixed-ligand complexes with ethylenediamine in aqueous solution. Polyhedron 26, 4223–4227 (2007) CrossRefGoogle Scholar
  9. 9.
    Wozniak, M., Nowogrocki, G.: Acidites et complexes des acides (alkyl- et aminoalkyl-) phosphoniques. I. Determination potentiometrique des constantes d’acidite par affinement multiparametrique: prise en compte de l’impurete carbonate. Talanta 25, 633–641 (1978) CrossRefGoogle Scholar
  10. 10.
    Mohan, M., Abbott, E.: Metal complexes of biologically occurring aminophosphonic acids. J. Coord. Chem. 8, 175–182 (1978) CrossRefGoogle Scholar
  11. 11.
    Kiss, T., Balla, J., Nagy, G., Kozłowski, H., Kowalik, J.: Complexes of aminophosphonates. I. Transition metal complexes of aminophosphonic acid analogues of α-alanine, β-alanine, phenylalanine and tyrosine. Inorg. Chim. Acta 138, 25–30 (1987) CrossRefGoogle Scholar
  12. 12.
    Kurzak, B., Matczak-Jon, E., Hoffmann, M.: Transition metal complexes of aminophosphonic acid analogues of methionine and alanine in aqueous solution. J. Coord. Chem. 43, 243–255 (1998) CrossRefGoogle Scholar
  13. 13.
    Lipiński, R., Chruściński, L., Kozłowski, H.: Coordination abilities of amino-phosphonate derivatives of pyridine. Inorg. Chim. Acta 322, 157–161 (2001) CrossRefGoogle Scholar
  14. 14.
    Kurzak, B., Kroczewska, D.: Potentiometric investigation of ternary complexes of nickel, copper, zinc and cadmium with l-α-alaninehydroxamic acid and ethylenediamine. J. Coord. Chem. 34, 67–76 (1995) CrossRefGoogle Scholar
  15. 15.
    Brookes, G., Pettit, L.D.: Complex formation and stereoselectivity in the ternary systems copper(II)–D/L-histidine–L-amino-acids. J. Chem. Soc., Dalton Trans. 1918–1924 (1977) Google Scholar
  16. 16.
    Odani, A., Yamauchi, O.: Preferential formation of ternary copper(II) complexes involving substituted ethylenediamines and amino acids with an aromatic side chain. Inorg. Chim. Acta 93, 13–18 (1984) CrossRefGoogle Scholar
  17. 17.
    Lomozik, L., Bolewski, L., Dworczak, R.: Complex formation in copper(II) ternary systems involving polyamines and diaminocarboxylates studiem by potentiometric and spectroscopic techniques. J. Coord. Chem. 41, 261–274 (1997) CrossRefGoogle Scholar
  18. 18.
    Farkas, E., Enyedy, E.A., Micera, G., Garribba, E.: Coordination modes of hydroxamic acids in copper(II), nickel(II) and zinc(II) mixed-ligand complexes in aqueous solution. Polyhedron 19, 1727–1736 (2000) CrossRefGoogle Scholar
  19. 19.
    Gąsowska, A., Jastrząb, R., Bregier-Jarzębowska, R., Lomozik, L.: Intermolecular and coordination reactions in the system sof copper(II) with adenosine 5′-monophosphate or cytidine 5′-monophosphate and triamines. Polyhedron 20, 2305–2313 (2001) CrossRefGoogle Scholar
  20. 20.
    Kroczewska, D., Bogusz, K., Kurzak, B., Jezierska, J.: Potentiometric and spectroscopic study of mixed-ligand copper(II) complexes with N,N,N′,N′,N″-pentamethyldiethylenetriamine and α- (or β-) alaninehydroxamic acids in water solution. Polyhedron 21, 295–303 (2002) CrossRefGoogle Scholar
  21. 21.
    Kroczewska, D., Kurzak, B., Jezierska, J.: The role of the carboxylic group in the copper(II) mixed-ligand complexes of DL-aspartic acid-β-hydroxamic acid and polyamines. Polyhedron 25, 678–686 (2006) CrossRefGoogle Scholar
  22. 22.
    Kurzak, B., Kamecka, A., Bogusz, K., Jezierska, J.: Stabilities and coordination modes of histidine in copper(II) mixed-ligand complexes with ethylenediamine, diethylenetriamine or N,N,N′,N′,N″-pentamethyldiethylenetriamine in aqueous solution. Polyhedron 27, 2952–2958 (2008) CrossRefGoogle Scholar
  23. 23.
    Kurzak, B., Kamecka, A., Bogusz, K., Jezierska, J., Woźna, A.: Stabilities and coordination modes of methionine in copper(II) mixed-ligand complexes with ethylenediamine, diethylenetriamine or N,N,N,N′,N′,N″-pentamethyldiethylenetriamine in aqueous solution. Polyhedron 28, 2403–2410 (2009) CrossRefGoogle Scholar
  24. 24.
    Sigel, H.: Metal Ions in Biological Systems, vol. 2. Dekker, New York (1973) Google Scholar
  25. 25.
    Sigel, H.: Stabilität, Struktur und Reaktivität von ternären Cu2+-Komplexen. Angew. Chem. 87, 391–400 (1975) CrossRefGoogle Scholar
  26. 26.
    Sigel, H.: Ternary Cu2+ complexes: stability, structure, and reactivity. Angew. Chem., Int. Ed. Engl. 14, 394–402 (1975) CrossRefGoogle Scholar
  27. 27.
    Azuma, N., Kohno, Y., Izshizu, K., Takakuwa, T., Tsuboyama, S., Tsuboyama, K., Kobayashi, K., Sakurai, T.: Spectroscopic studies on copper(II) complexes of chiral cyclens: [CuN4Cl] chromophores varying from square pyramidal to trigonal bipyramidal stereochemistry. Inorg. Chim. Acta 215, 109–121 (1994) CrossRefGoogle Scholar
  28. 28.
    Murakami, T., Murata, K., Ishikawa, Y.: Stabilities and spectral properties of five-coordinate mixed-ligand copper (II) complexes containing N,N,N′,N′,N″-pentamethyldiethylenetriamine and α-amino acids. Inorg. Chim. Acta 244, 51–56 (1996) CrossRefGoogle Scholar
  29. 29.
    Bencini, A., Bertini, I., Gatteschi, D., Scozzafava, A.: Single-crystal ESR spectra of copper(II) complexes with geometries intermediate between a square pyramid and a trigonal bipyramid. Inorg. Chem. 17, 3194–3197 (1978) CrossRefGoogle Scholar
  30. 30.
    Garribba, E., Micera, G.: The determination of the geometry of Cu(II) complexes: an EPR spectroscopy experiment. J. Chem. Education 83, 1229 (2006) CrossRefGoogle Scholar
  31. 31.
    Jeżowska-Bojczuk, M., Kiss, T., Kozłowski, H., Decock, P., Barycki, J.: Complexes of aminophosphonates. Part 8. Copper(II) complexes of N-(phosphonomethyl)amino acids and related compounds. J. Chem. Soc. Dalton Trans. 811–817 (1994) Google Scholar
  32. 32.
    Buglyo, P., Kiss, T., Dyba, M., Jeżowska-Bojczuk, M., Kozłowski, H., Boushin, A.: Complexes of aminophosphonates. 10. Copper(II) complexes of phosphonic derivatives of iminodiacetate and nitrilotriacetate. Polyhedron 16, 3447–3454 (1997) CrossRefGoogle Scholar
  33. 33.
    Kiss, T., Farkas, E., Kozłowski, H., Kowalik, J.: Complexes of aminophosphonates. II. Transition metal complexes of aminophosphonic acid analogues of aspartic acid and glutamic acid. Inorg. Chim. Acta 155, 281–287 (1989) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • A. Kamecka
    • 1
  • B. Kurzak
    • 2
  • J. Jezierska
    • 3
  • A. Woźna
    • 1
  1. 1.Institute of ChemistryUniversity of Natural Sciences and HumanitiesSiedlcePoland
  2. 2.Faculty of ChemistryUniversity of OpoleOpolePoland
  3. 3.Faculty of ChemistryUniversity of WrocławWrocławPoland

Personalised recommendations