A Study on Host–Guest Complexation of 5-Amino-2-Mercaptobenzimidazole with β-Cyclodextrin

  • R. Rajamohan
  • S. Kothai Nayaki
  • M. Swaminathan


Spectral characteristics of 5-amino-2-mercaptobenzimidazole (AMBZ) have been investigated in aqueous β-cyclodextrin (β-CDx) solutions. The absorbance and fluorescence intensity of the neutral and monocationic forms of AMBZ are enhanced due to the formation of an inclusion complex with β-CDx. The stoichiometry and binding constants of the complex were calculated using the Benesi–Hildebrand equation. Formation of an inclusion complex between AMBZ and β-CDx was also confirmed by steady state and time-resolved fluorescence spectroscopy. FT-IR spectral data and SEM images of the solid complex provide supporting evidence for complex formation. The effect of acidity on the ground and excited state equilibrium between neutral and monocationic forms of AMBZ was analyzed in aqueous and β-CDx environments. The ground and excited state acidity constants in β-CDx solutions were found to be different from those in aqueous solution. Based on these results, the structure of the 1:1 complex is proposed.


5-Amino-2-mercaptobenzimidazole Cyclodextrin Fluorescence spectroscopy Inclusion complex Acidity constant 


  1. 1.
    Tong, L.: Cyclodextrin Chemistry. Science Press, Beijing (2001). p. 10 Google Scholar
  2. 2.
    Yanez, C., Salagar, R., Nunez, L.J.: Spectrophotometric and electrochemical study of the inclusion complex between β-cyclodextrin and furnidipine. J. Pharm. Biomed. Anal. 35, 51–60 (2004) CrossRefGoogle Scholar
  3. 3.
    Rawat, S., Jain, S.K.: Solubility enhancement of celecoxib using β-cyclodextrin inclusion complexes. Eur. J. Pharm. Biopharm. 57, 263–267 (2004) CrossRefGoogle Scholar
  4. 4.
    Berzas, J.J., Alaon, A., Lazaro, J.A.: Cyclodextrin enhanced spectrofluorimetric determination of fluoxetine in pharmaceuticals and biological fluids. Talanta 58, 301–309 (2002) CrossRefGoogle Scholar
  5. 5.
    Fakayode, S.O., Swamidoss, I.M., Busch, M.A.: Determination of the enantiomeric composition of some molecules of pharmaceutical interest by chemometric analysis of the UV spectra of guest–host complexes formed with modified cyclodextrins. Talanta 65, 838–845 (2005) CrossRefGoogle Scholar
  6. 6.
    Csernak, O., Buvari-Barcza, A., Barcza, L.: Cyclodextrin assisted nanophase determination of alkaloid salts. Talanta 69, 425–429 (2006) CrossRefGoogle Scholar
  7. 7.
    Zhang, G., Shuang, S., Dong, C.: Study on the interaction of methylene blue with cyclodextrin derivatives by absorption and fluorescence spectroscopy. Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 59, 2935–2941 (2003) CrossRefGoogle Scholar
  8. 8.
    Pacioni, N.L., Vezlia, A.V.: Determination of carbaryl and carbofuran in fruits and tap water by β-cyclodextrin enhanced fluorimetric method. Anal. Chim. Acta 488, 193–202 (2003) CrossRefGoogle Scholar
  9. 9.
    Szetjli, J.: Introduction and general overview of cyclodextrin chemistry. J. Chem. Rev. 98, 1743–1754 (1998) CrossRefGoogle Scholar
  10. 10.
    Roberts, E.L., Dey, J., Warner, I.M.: Excited-state intramolecular proton transfer of 2-(2′-hydroxyphenyl)benzimidazole in cyclodextrins and binary solvent mixtures. J. Phys. Chem. A 101, 5296–5301 (1997) CrossRefGoogle Scholar
  11. 11.
    Dey, J.K., Dogra, S.K.: Dual fluorescence of 2-[4-(dimethylamino)phenyl]benzothiazole and its benzimidazole analog: Effect of solvent and pH on electronic spectra. J. Phys. Chem. 98, 3638–3644 (1994) CrossRefGoogle Scholar
  12. 12.
    Scalia, S., Molinari, A., Casolari, A., Maldotti, A.: Complexation of the sunscreen agent, phenylbenzimidazole sulphonic acid with cyclodextrins: effect on stability and photo-induced free radical formation. Eur. J. Pharm. Sci. 22, 241–249 (2004) CrossRefGoogle Scholar
  13. 13.
    Rajendiran, N., Swaminathan, M.: Unusual shifts of bis(4-aminophenyl) ether. Bull. Chem. Soc. Jpn. 69, 2447–2452 (1996) CrossRefGoogle Scholar
  14. 14.
    Kothai Nayaki, S., Swaminathan, M.: A study of solvatochromism and proton transfer kinetics of 2,2′-dihydroxybiphenyl. J. Photochem. Photobiol. A, Chem. 102, 217–22 (1997) CrossRefGoogle Scholar
  15. 15.
    Kothai Nayaki, S., Swaminathan, M.: Unusual luminescence characteristics of aminobiphenyls. Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 58, 2931–2940 (2002) CrossRefGoogle Scholar
  16. 16.
    Enoch, I.M.V., Swaminathan, M.: Fluorimetric study on molecular recognition of β-cyclodextrin with 2-amino-9-fluorenone. J. Fluoresc. 16, 501–510 (2006) CrossRefGoogle Scholar
  17. 17.
    Enoch, I.M.V., Swaminathan, M.: Fluorimetric and prototropic studies on the inclusion complexation of 2-amino and 4-aminodiphenyl ethers with β-cyclodextrin: unusual behavior of 4-aminodiphenyl ether. J. Lumin. 127, 713–720 (2007) CrossRefGoogle Scholar
  18. 18.
    Rajamohan, R., Kothai Nayaki, S., Swaminathan, M.: Inclusion complexation and photoprototropic behaviour of 3-amino-5-nitrobenzisothiazole with β-cyclodextrin. Spectrochim. Acta A 69, 371–377 (2008) CrossRefGoogle Scholar
  19. 19.
    Rajamohan, R., Kothai Nayaki, S., Swaminathan, M.: Spectrofluorimetric study on inclusion complexation of 2-amino-6-fluorobenzothiazole with β-cyclodextrin. Collect. Czechoslov. Chem. Commun. 73, 147–160 (2008) CrossRefGoogle Scholar
  20. 20.
    Kim, Y.H., Cho, D.W., Yoon, M., Kim, D.: Observation of hydrogen-bonding effects on twisted intramolecular charge transfer of p-(N,N-diethylamino)benzoic acid in aqueous cyclodextrin solutions. J. Phys. Chem. 100, 15670–15676 (1996) CrossRefGoogle Scholar
  21. 21.
    Kim, Y., Lee, B.I., Yoon, M.: Excited-state intramolecular charge transfer of p-N,N-dimethylaminobenzoic acid in Y zeolites: hydrogen-bonding effects. Chem. Phys. Lett. 286, 466–472 (1998) CrossRefGoogle Scholar
  22. 22.
    Cho, D.W., Kim, Y.H., Kong, S.G., Yoon, M., Kim, D.: Cyclodextrin effects on intramolecular charge transfer of 2-biphenylcarboxylic acid: a pre-twisted molecule. J. Chem. Soc. Faraday Trans. I 92, 29–33 (1996) Google Scholar
  23. 23.
    Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949) CrossRefGoogle Scholar
  24. 24.
    Hoshino, M., Imamura, M., Ikehara, K., Hamai, Y.: Fluorescence enhancement of benzene derivatives by forming inclusion complexes with β-cyclodextrin in aqueous solutions. J. Phys. Chem. 85, 1820–1823 (1981) CrossRefGoogle Scholar
  25. 25.
    Al-Hassan, K.A., Klein, V.K.A., Sawaiyan, A.: Normal and twisted intramolecular charge-transfer fluorescence of 4-dimethylaminobenzonitrile in α-cyclodextrine cavities. Chem. Phys. Lett. 212, 581–587 (1993) CrossRefGoogle Scholar
  26. 26.
    Monti, S., Kohler, G., Grabner, G.: Photophysics and photochemistry of methylated phenols in β-cyclodextrin inclusion complexes. J. Phys. Chem. 97, 13011–13016 (1993) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • R. Rajamohan
    • 1
  • S. Kothai Nayaki
    • 2
  • M. Swaminathan
    • 3
  1. 1.Department of ChemistrySKP Institute of TechnologyTiruvannamalaiIndia
  2. 2.Chemistry Division, FEATAnnamalai UniversityAnnamalainagarIndia
  3. 3.Department of ChemistryAnnamalai UniversityAnnamalainagarIndia

Personalised recommendations