Advertisement

Journal of Solution Chemistry

, Volume 40, Issue 8, pp 1505–1515 | Cite as

Facilitated Proton Transfer by a Novel 2-Aminothiazole Derivative Across the Water/1,2-Dichloroethane Interface

  • Haluk Bingol
  • Ahmet Coskun
Article

Abstract

The behavior of proton transfer facilitated by a novel thiazole derivative, N-methyl-4-(4-phenoxyphenyl)thiazol-2-amine (MPPT), across the water/1,2-dichloroethane (1,2-DCE) interface was investigated electrochemically. The ionic partition diagram for MPPT was obtained from interpretation of the cyclic voltammograms. The apparent partition coefficient of MPPT was evaluated by the shaking-flask method under experimental conditions, while that for the protonated form of MPPT was calculated from its transfer potential obtained from the ionic partition diagram. It was suggested that the mechanism for transfer of MPPT across the water/1,2-DCE) interface depends on the pH of the aqueous phase. The parameters of the facilitated proton transfer across the water/1,2-DCE interface were evaluated as a quantitative measure of its lipophilicity.

Keywords

Proton transfer Thiazole ITIES Ionic partition diagram Cyclic voltammetry Lipophilicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vanysek, P., Ramirez, L.B.: Interface between two immiscible liquid electrolytes: a review. J. Chil. Chem. Soc. 53, 1455–1463 (2008). doi: 10.4067/S0717-97072008000200002 CrossRefGoogle Scholar
  2. 2.
    Trojanek, A., Langmaier, J., Su, B., Girault, H.H., Samec, Z.: Electrochemical evidence of catalysis of oxygen reduction at the polarized liquid–liquid interface by tetraphenylporphyrin monoacid and diacid. Electrochem. Commun. 11, 1940–1943 (2009). doi: 10.1016/j.elecom.2009.08.022 CrossRefGoogle Scholar
  3. 3.
    Garcia, J.I., Fernandez, R.A., Ruggeri, A.J., Dassie, S.A.: Novel electrochemical approach to the determination of the partition coefficient of neutral weak bases. J. Electroanal. Chem. 594, 80–88 (2006). doi: 10.1016/j.jelechem.2006.05.034 CrossRefGoogle Scholar
  4. 4.
    Malkia, A., Liljeroth, P., Kontturi, K.: Membrane activity of ionisable drugs—a task for liquid–liquid electrochemistry? Electrochem. Commun. 5, 473–479 (2003). doi: 10.1016/S1388-2481(03)00107-3 CrossRefGoogle Scholar
  5. 5.
    Smith, D.A., Waterbeemd, H.: Pharmacokinetics and metabolism in early drug discovery. Curr. Opin. Chem. Biol. 3, 373–378 (1999). doi: 10.1016/S1367-5931(99)80056-8 CrossRefGoogle Scholar
  6. 6.
    Lam, H.T., Pereira, C.M., Roussel, C., Carrupt, P.A., Girault, H.H.: Immobilized pH gradient gel cell to study the pH dependence of drug lipophilicity. Anal. Chem. 78, 1503–1508 (2006). doi: 10.1021/ac051808a CrossRefGoogle Scholar
  7. 7.
    Reymond, F., Carrupt, P.A., Testa, B., Girault, H.H.: Charge and delocalisation effects on the lipophilicity of protonable drugs. Chem. Eur. J. 5, 39–47 (1999). doi: 10.1002/(SICI)1521-3765(19990104)5:1 CrossRefGoogle Scholar
  8. 8.
    Reymond, F., Steyaert, G., Carrupt, P.A., Testa, B., Girault, H.H.: Ionic partition diagrams: a potential-pH representation. J. Am. Chem. Soc. 118, 11951–11957 (1996). doi: 10.1021/ja962187t CrossRefGoogle Scholar
  9. 9.
    Akgemci, E.G., Bingol, H., Atalay, T., Ersoz, M.: Effect of N(4)-substituent groups on transfer of 2-benzoylpyridine thiosemicarbazone derivates at the water/1,2-dichloroethane interface. Electrochim. Acta 53, 673–679 (2007). doi: 10.1016/j.electacta.2007.07.028 CrossRefGoogle Scholar
  10. 10.
    Gobry, V., Bouchard, G., Carrupt, P.A., Testa, B., Girault, H.H.: Physicochemical characterization of sildenafil: Ionization, lipophilicity behavior and ionic-partition diagram studied by two-phase titration and electrochemistry. Helv. Chim. Acta 83, 1465–1474 (2000). doi: 10.1002/1522-2675(20000705)83:7<1465::AID-HLCA1465>3.0.CO;2-# CrossRefGoogle Scholar
  11. 11.
    Samec, Z., Trojanek, A., Langmaier, J., Samcova, E., Malek, J.: Voltammetry of protonated anesthetics at a liquid membrane: Evaluation of the drug propagation. Electroanalysis 12, 901–904 (2000). doi: 10.1002/1521-4109(200008)12:12<901::AID-ELAN901>3.0.CO;2-6 CrossRefGoogle Scholar
  12. 12.
    Liu, X., Bouchard, G., Girault, H.H., Testa, B., Carrupt, P.A.: Partition coefficients of ionizable compounds in o-nitrophenyl octyl ether/water measured by the potentiometric method. Anal. Chem. 75, 7036–7039 (2003). doi: 10.1021/ac034972b CrossRefGoogle Scholar
  13. 13.
    Herzog, G., Daly, P.E., Arrigan, D.W.M.: Electrochemical behaviour of denatured haemoglobin at the liquid|liquid interface. Electrochem. Commun. 12, 335–337 (2010). doi: 10.1016/j.elecom.2009.12.020 CrossRefGoogle Scholar
  14. 14.
    Jetzer, W.E., Huq, A.S., Ho, N.F.H., Flynn, G., Duraiswamy, N., Condie, L.: Permeation of mouse skin and silicone rubber membranes by phenols: relationship to in vitro partitioning. J. Pharm. Sci. 75, 1098–1103 (1986). doi: 10.1002/jps.2600751116 CrossRefGoogle Scholar
  15. 15.
    Dondoni, A., Marra, A.: Thiazole-mediated synthetic methodology. Chem. Rev. 104, 2557–2600 (2004). doi: 10.1021/cr020079l CrossRefGoogle Scholar
  16. 16.
    Wang, S., Meads, C., Wood, G., Osnowski, A., Anderson, S., Yuill, R., Thomas, M., Mwzna, M., Jackson, W., Midgley, C., Griffiths, G., Fleming, I., Green, S., McNae, I., Wu, S.Y., Mclnness, C., Zheleva, D., Walkinshaw, M.D., Fischer, P.M.: 2-Anilino-4-(thiazol-5-yl)pyrimidine CDK inhibitors: Synthesis, SAR analysis, X-ray crystallography, and biological activity. J. Med. Chem. 47, 1662–1675 (2004). doi: 10.1021/jm0309957 CrossRefGoogle Scholar
  17. 17.
    Ling, S., Xin, Z., Qing, Z., Jian-Bing, L., Zhong, J., Jian-Xin, F.: Synthesis, structure, and biological activity of novel 1H-1,2,4-triazol-1-yl-thiazole derivatives. Synth. Commun. 37, 199–207 (2007). doi: 10.1080/00397910601031629 CrossRefGoogle Scholar
  18. 18.
    Matsuo, M., Ogino, T., Igari, N., Seno, H., Shimonura, K.: EP Patent 0412404 1991 Google Scholar
  19. 19.
    Pevarello, P., Amici, R., Villa, M., Solom, B., Vulpetti, A., Varasi, M., Brasca, M.G., Traquandi, G., Nesi, M.: EP Patent 1406899 2004 Google Scholar
  20. 20.
    Shao, L., Zhou, X., Hu, Y., Jin, Z., Liu, J., Fang, J.X.: Synthesis and evaluation of novel ferrocenyl thiazole derivatives as anticancer agents. Synth. Reac. Inorg. Met.-Org. Nano-Met. Chem. 36, 325–330 (2006). doi: 10.1080/15533170600651405 Google Scholar
  21. 21.
    Ogretir, C., Demirayak, S., Duran, M.: Spectroscopic determination and evaluation of acidity constants for some drug precursor 2-amino-4-(3- or 4-substituted phenyl) thiazole derivatives. J. Chem. Eng. Data 55, 1137–1142 (2010). doi: 10.1021/je9005739 CrossRefGoogle Scholar
  22. 22.
    Karipcin, F., Dede, B., Ozkorucuklu, S.P., Kabalcilar, E.: Mn(II), Co(II) and Ni(II) complexes of 4-(2-thiazolylazo)resorcinol: Syntheses, characterization, catalase-like activity, thermal and electrochemical behavior. Dyes Pigm. 84, 14–18 (2010). doi: 10.1016/j.dyepig.2009.06.010 CrossRefGoogle Scholar
  23. 23.
    Chen, L., Yang, C., Qina, J., Gao, J., Ma, D.: Tuning of emission: Synthesis, structure and photophysical properties of imidazole, oxazole and thiazole-based iridium (III) complexes. Inorg. Chim. Acta 359, 4207–4214 (2006). doi: 10.1016/j.ica.2006.06.039 CrossRefGoogle Scholar
  24. 24.
    Potewar, T.M., Ingale, S.A., Srinivasan, K.V.: Catalyst-free efficient synthesis of 2-aminothiazoles in water at ambient temperature. Tetrahedron 64, 5019–5022 (2008). doi: 10.1016/j.tet.2008.03.082 CrossRefGoogle Scholar
  25. 25.
    Su, B., Hatay, I., Li, F., Partovi-Nia, R., Mendez, M.A., Samec, Z., Ersoz, M., Girault, H.H.: Oxygen reduction by decamethylferrocene at liquid/liquid interfaces catalyzed by dodecylaniline. J. Electroanal. Chem. 639, 102–108 (2010). doi: 10.1016/j.jelechem.2009.11.029 CrossRefGoogle Scholar
  26. 26.
    Samec, Z.: Electrochemistry at the interface between two immiscible electrolyte solutions (IUPAC Technical Report). Pure Appl. Chem. 76, 2147–2180 (2004). doi: 10.1351/pac200476122147 CrossRefGoogle Scholar
  27. 27.
    Kontturi, K., Murtomaki, L.: Electrochemical determination of partition coefficients of drugs. J. Pharm. Sci. 81, 970–975 (1992). doi: 10.1002/jps.2600811003 CrossRefGoogle Scholar
  28. 28.
    Koryta, J.: Electrochemical polarization phenomena at the interface of two immiscible electrolyte solutions–II. Electrochim. Acta 29, 445–452 (1984). doi: 10.1016/0013-4686(84)87092-9 CrossRefGoogle Scholar
  29. 29.
    Reymond, F., Chopineaux-Courtois, V., Steyaert, G., Bouchard, G., Carrupt, P.A., Testa, B., Girault, H.H.: Ionic partition diagrams of ionisable drugs: pH-lipophilicity profiles, transfer mechanisms and charge effects on solvation. J. Electroanal. Chem. 462, 235–250 (1999). doi: 10.1016/S0022-0728(98)00418-5 CrossRefGoogle Scholar
  30. 30.
    Sabela, A., Marecek, V., Samec, Z., Fuoco, R.: Standard Gibbs energies of transfer of univalent ions from water to 1,2-dichloroethane. Electrochim. Acta 37, 231–235 (1992). doi: 10.1016/0013-4686(92)85008-9 CrossRefGoogle Scholar
  31. 31.
    Katano, H., Senda, M.: Voltammetric study of the transfer of heavy metal ions at the nitrobenzene/water interface assisted by 1,4,7,10,13,16-hexathiacyclooctadecane. Anal. Sci. 15, 1179–1184 (1999). doi: 10.2116/analsci.15.1179 CrossRefGoogle Scholar
  32. 32.
    Blake, A.J., Cacote, M.H.M., Devillanova, F.A., Garau, A., Isaia, F., Lippolis, V., Pereira, C.M., Silva, F., Tei, L.: Coordination chemistry of 2,5,8-trithia[9],(2,9)-1,10-phenanthrolinophane (L) toward rhodium(III) at the polarised water/1,2-dichloroethane interface—a possible new approach to the problem of separating RhIII from chloride media. Eur. J. Inorg. Chem. 2002, 1816–1822 (2002). doi: 10.1002/1099-0682(200207)2002:7<1816::AID-EJIC1816>3.0.CO;2-Y CrossRefGoogle Scholar
  33. 33.
    Plass, S.U.: Two-phase partition profiling of drugs and ionisable compounds, Ph.D. Thesis, EPFL 3000, Lausanne, Switzerland (2004) Google Scholar
  34. 34.
    Homolka, D., Marecek, V., Samec, Z., Base, K., Wendt, H.: The partition of amines between water and an organic solvent phase. J. Electroanal. Chem. 163, 159–170 (1984). doi: 10.1016/S0022-0728(84)80049-2 CrossRefGoogle Scholar
  35. 35.
    Kong, Y.T., Kakiuchi, T.: Electrochemical determination of the lipophilicity scale of arenediazonium ions based on the ion transfer across the liquid|liquid interface. J. Electroanal. Chem. 483, 22–28 (2000). doi: 10.1016/S0022-0728(00)00012-7 CrossRefGoogle Scholar
  36. 36.
    Brown, R., Fischer, R., Blunk, J., Berlin, K.D., Ramalingam, K., Durham, N.N.: Biological activity and active groups of novel pyrazoles, thiosemicarbazones and substituted thiazoles. Proc. Okla. Acad. Sci. 56, 15–17 (1976) Google Scholar
  37. 37.
    Alemu, H.: Voltammetry of drugs at the interface between two immiscible electrolyte solutions. Pure Appl. Chem. 76, 697–705 (2004). doi: 10.1351/pac200476040697 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Chemistry DepartmentSelcuk UniversityMeram/KonyaTurkey

Personalised recommendations