Skip to main content

Advertisement

Log in

Solubility Measurements of Crystalline NiO in Aqueous Solution as a Function of Temperature and pH

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Results of solubility experiments involving crystalline nickel oxide (bunsenite) in aqueous solutions are reported as functions of temperature (0 to 350 °C) and pH at pressures slightly exceeding (with one exception) saturation vapor pressure. These experiments were carried out in either flow-through reactors or a hydrogen-electrode concentration cell for mildly acidic to near neutral pH solutions. The results were treated successfully with a thermodynamic model incorporating only the unhydrolyzed aqueous nickel species (viz., Ni2+) and the neutrally charged hydrolyzed species (viz., \(\mathrm{Ni(OH)}_{2}^{0})\). The thermodynamic quantities obtained at 25 °C and infinite dilution are, with 2σ uncertainties: \(\log_{10}K_{\mathrm{s0}}^{\mathrm{o}} = (12.40 \pm 0.29),\varDelta_{\mathrm{r}}G_{m}^{\mathrm{o}} = -(70. 8 \pm 1.7)\) kJ⋅mol−1; \(\varDelta_{\mathrm{r}}H_{m}^{\mathrm{o}} = -(105.6 \pm 1.3)\) kJ⋅mol−1; \(\varDelta_{\mathrm{r}}S_{m}^{\mathrm{o}} =-(116.6 \pm 3.2)\) J⋅K−1⋅mol−1; \(\varDelta_{\mathrm{r}}C_{p,m}^{\mathrm{o}} = (0 \pm 13)\) J⋅K−1⋅mol−1; and \(\log_{10}K_{\mathrm{s2}}^{\mathrm{o}} = -(8.76 \pm 0.15)\); \(\varDelta_{\mathrm{r}}G_{m}^{\mathrm{o}} = (50.0 \pm 1.7)\) kJ⋅mol−1; \(\varDelta_{\mathrm{r}}H_{m}^{\mathrm{o}} = (17.7 \pm 1.7)\) kJ⋅mol−1; \(\varDelta_{\mathrm{r}}S_{m}^{\mathrm{o}} = -(108\pm 7)\) J⋅K−1⋅mol−1; \(\varDelta_{\mathrm{r}}C_{p,m}^{\mathrm{o}} = -(108 \pm 3)\) J⋅K−1⋅mol−1. These results are internally consistent, but the latter set differs from those gleaned from previous studies recorded in the literature. The corresponding thermodynamic quantities for the formation of Ni2+ and \(\mathrm{Ni(OH)}_{2}^{0}\) are also estimated. Moreover, the \(\mathrm{Ni(OH)}_{3}^{ -}\) anion was never observed, even in relatively strong basic solutions (\(m_{\mathrm{OH}^{ -}} = 0.1\) mol⋅kg−1), contrary to the conclusions drawn from all but one previous study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Macdonald, D.D., Cragnolino, G.A.: Corrosion of steam cycle materials. In: Cohen, P. (ed.) The ASME Handbook on Water Technology for Thermal Power Plants (1989). EPRI Project No. RP 1958–1, Chap. 9

    Google Scholar 

  2. Beverskog, B., Puigdomenech, I.: Revised Pourbaix diagrams for nickel at 25–300 °C. Corros. Sci. 39, 969–980 (1997)

    Article  CAS  Google Scholar 

  3. Kritzer, P., Boukis, N., Dinjus, E.: Factors controlling corrosion in high-temperature aqueous solutions: a contribution to the dissociation and solubility data influencing corrosion processes. J. Supercrit. Fluids 15, 205–227 (1999)

    Article  CAS  Google Scholar 

  4. Hoffmann, M.M., Darab, J.G., Palmer, B.J., Fulton, J.L.: A transition in the Ni2+ complex structure from six- to four-coordinate upon formation of ion pair species in supercritical water: an X-ray absorption fine structure, near-infrared, and molecular dynamics study. J. Phys. Chem. 103, 8471–8482 (1999)

    CAS  Google Scholar 

  5. Gamsjäger, H., Bugajski, J., Gajda, T., Lemire, R.J., Preis, W.: In: Mompean, F., Illemasséne, M., Perrone, J. (eds.) Chemical Thermodynamics of Nickel. Elsevier, Amsterdam (2005), Chap. V

    Google Scholar 

  6. Tremaine, P.R., LeBlanc, J.C.: The solubility of nickel oxide and hydrolysis of Ni2+ in water to 573 K. J. Chem. Thermodyn. 12, 521–538 (1980)

    Article  CAS  Google Scholar 

  7. Ziemniak, S.E., Jones, M.E., Combs, K.E.S.: Solubility and phase behavior of nickel oxide in aqueous sodium phosphate solutions at elevated temperatures. J. Solution Chem. 18, 1133–1152 (1989)

    Article  CAS  Google Scholar 

  8. Ziemniak, S.E., Goyette, M.A.: Nickel(II) oxide solubility and phase stability in high temperature aqueous solutions. J. Solution Chem. 33, 1135–1159 (2004)

    Article  CAS  Google Scholar 

  9. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS tables of chemical thermodynamic properties. J. Phys. Chem. Ref. Data 11, 2–38 (1982) 2–166

    Google Scholar 

  10. Baes, C.F., Jr., Mesmer, R.E.: The Hydrolysis of Cations. Wiley, New York (1976)

    Google Scholar 

  11. Palmer, D.A., Bénézeth, P., Wesolowski, D.J.: Aqueous high temperature solubility studies. I. The solubility of boehmite at 150 °C as a function of ionic strength and pH as determined by “in situ” measurements. Geochim. Cosmochim. Acta 65, 2081–2095 (2001)

    Article  CAS  Google Scholar 

  12. Bénézeth, P., Palmer, D.A., Wesolowski, D.J.: Dissolution/precipitation kinetics of boehmite: application of a pH relaxation technique to study near-equilibrium rates. Geochim. Cosmochim. Acta 72, 2429–2453 (2008)

    Article  Google Scholar 

  13. Palmer, D.A., Gamsjäger, H.: Solubility measurements of crystalline β-Ni(OH)2 in aqueous solution as a function of temperature and pH. J. Coord. Chem. 63, 2888–2908 (2010)

    Article  CAS  Google Scholar 

  14. Bénézeth, P., Palmer, D.A., Wesolowski, D.J., Xiao, C.: New measurements of the solubility of zinc oxide from 150 to 350 °C. J. Solution Chem. 31, 947–973 (2002)

    Article  Google Scholar 

  15. Mironov, V.E., Pashkov, G.L., Stupko, T.V.: Thermodynamics of formation reactions and hydrometallurgical application of metal-ammonia complexes in aqueous solutions. Russ. Chem. Rev. 61, 944–958 (1992)

    Article  Google Scholar 

  16. NIST Critically selected stability constants of metal complexes database. Version 6.0 for Windows, NIST Standard Reference Database 46 (2001)

  17. Hitch, B.F., Mesmer, R.E.: The ionization of aqueous ammonia to 300 °C in KCl media. J. Solution Chem. 5, 667–680 (1976)

    Article  CAS  Google Scholar 

  18. Palmer, D.A., Bénézeth, P., Wesolowski, D.J.: Boric acid hydrolysis: a new look at the available data. PowerPlant Chem. 2, 261–264 (2000)

    CAS  Google Scholar 

  19. Archer, D.G.: Thermodynamic properties of the NaCl + H2O system. II. Thermodynamic properties of NaCl(aq), NaCl⋅2H2O(cr), and phase equilibria. J. Phys. Ref. Data 21, 793–829 (1992)

    Article  CAS  Google Scholar 

  20. Marshall, W.L., Franck, E.U.: Ion product of water substance, 0–1000 °C, 1–10,000 bars. New international formulation and its background. J. Phys. Chem. Ref. Data 10, 295–304 (1981)

    Article  CAS  Google Scholar 

  21. Lindsay, W.T., Jr.: In: Cohen, P. (ed.) The ASME Handbook on Water Technology for Thermal Power Plants, p. 483. The American Society of Mechanical Engineers, New York (1989), Chap. 7

    Google Scholar 

  22. Palmer, D.A., Hyde, K.E.: Ferrous chloride and acetate complexation in aqueous solutions at high temperatures. Geochim. Cosmochim. Acta 57, 1393–1408 (1993)

    Article  CAS  Google Scholar 

  23. Sylvester, L.F., Pitzer, K.S.: Thermodynamics of electrolytes. 8. High-temperature properties, including enthalpy and heat capacity, with application to sodium chloride. J. Phys. Chem. 81, 1822–1828 (1977)

    Article  Google Scholar 

  24. Holmes, H.F., Mesmer, R.E.: Isopiestic molalities for aqueous solutions of the alkali metal hydroxides at elevated temperatures. J. Chem. Thermodyn. 30, 311–326 (1998)

    Article  CAS  Google Scholar 

  25. Shock, E.L., Sassani, D.C., Willis, M., Sverjensky, D.A.: Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 61, 907–950 (1997)

    Article  CAS  Google Scholar 

  26. Bénézeth, P., Palmer, D.A., Wesolowski, D.J.: The solubility of zinc oxide in 0.03 m NaTr as a function of temperature with in situ pH measurement. Geochim. Cosmochim. Acta 63, 1571–1586 (1999)

    Article  Google Scholar 

  27. Swaddle, T.W., Wong, T.C.T.: Hydrothermal reaction kinetics. The decomposition of nickel(II) hydroxide. Can. J. Chem. 56, 363–369 (1978)

    Article  CAS  Google Scholar 

  28. Plyasunova, N.V., Zhang, Y., Muhammed, M.: Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions. IV. Hydrolysis and hydroxo-complexes of Ni2+ at 298.15 K. Hydrometallurgy 48, 43–63 (1998)

    Article  CAS  Google Scholar 

  29. Archer, D.G.: Thermodynamic properties of importance to environmental processes and remediation. II. Previous thermodynamic property values for nickel and some of its compounds. J. Phys. Chem. Ref. Data 28, 1485–1507 (1999)

    Article  CAS  Google Scholar 

  30. Hemingway, B.S.: Thermodynamic properties for bunsenite, NiO, magnetite, Fe3O4, and hematite, Fe2O3, with comments on selected oxygen buffer reactions. Geochim. Cosmochim. Acta 75, 781–790 (1990)

    CAS  Google Scholar 

  31. Boyle, B.J., King, E.G., Conway, K.C.: Heats of formation of nickel and cobalt oxides (NiO and CoO) of combustion calorimetry. J. Am. Chem. Soc. 76, 3835–3837 (1954)

    Article  CAS  Google Scholar 

  32. Kelley, K.K., King, E.G.: Contributions to the data on theoretical metallurgy. XIV. Entropies of the elements and inorganic compounds. U.S. Bur. Mines Bull. No. 592 (1961)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. Palmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, D.A., Bénézeth, P., Xiao, C. et al. Solubility Measurements of Crystalline NiO in Aqueous Solution as a Function of Temperature and pH. J Solution Chem 40, 680–702 (2011). https://doi.org/10.1007/s10953-011-9670-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9670-x

Keywords

Navigation