Journal of Solution Chemistry

, Volume 40, Issue 3, pp 492–501 | Cite as

Interaction of 1,4-Dihydroxy–9,10-Anthraquinone with Calf Thymus DNA: A Comparison with Anthracycline Anticancer Drugs

  • Partha Sarathi Guin
  • Saurabh Das
  • Parikshit Chandra Mandal


The anthracycline drugs adriamycin and daunorubicin, efficient in the treatment of various human cancers, form strong intercalation complexes with DNA. The therapeutic efficacy and toxicity of such anticancer drugs are governed by biochemical reactions of the core dihydroxy-9,10-anthraquinone unit. The high cost and toxic side effects of anthracycline drugs limit their use in cancer therapy. For a few decades, efforts have been made to find cheap, less toxic yet efficient analogues of anthracyclines. This work on 1,4-dihydroxy-9,10-anthraquinone (QH2), a simple analogue of the anthracyclines, was carried out to compare its biochemical properties with anthracyclines. UV-Vis and fluorescence spectroscopic methods were used to analyze interaction of the compound with calf thymus DNA. The data were used to evaluate the binding constant and site size.


QH2 Calf thymus DNA UV-Visible spectroscopy Fluorescence Binding constant Binding site size 





calf thymus DNA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hardman, J.G., Gilman, A.G., Limbird, L.E.: Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 9th edn. McGraw-Hill, New York (1996) Google Scholar
  2. 2.
    Reszka, K., Kolodziejczyk, P., Hartley, J.A., Wilson, W.D., Lown, J.W.: Anthracycline and Anthracenedionebased Anticancer Agents. Elsevier, Amsterdam (1998) Google Scholar
  3. 3.
    Eriksson, M., Nordbn, B., Eriksson, S.: Anthracycline-DNA interactions studied with linear dichroism and fluorescence spectroscopy. Biochemistry 27, 8144–8151 (1988) CrossRefGoogle Scholar
  4. 4.
    Li, N., Ma, Y., Yang, C., Guo, L., Yang, L.: Interaction of anticancer drug mitoxantrone with DNA analyzed by electrochemical and spectroscopic methods. Biophys. Chem. 116, 199–205 (2005) CrossRefGoogle Scholar
  5. 5.
    Banerjee, T., Mukhopadhyay, R.: Structural effects of nogalamycin, an antibiotic antitumor agent, on DNA. Biochem. Biophys. Res. Commun. 374, 264–268 (2008) CrossRefGoogle Scholar
  6. 6.
    Dutta, P.K., Hutt, J.A.: Resonance Raman spectroscopic studies of adriamycin and copper(II)-adriamycin and copper(II)-adriamycin-DNA complexes. Biochemistry 25, 691–695 (1986) CrossRefGoogle Scholar
  7. 7.
    Beraldo, H., Gurnier-Suillerot, A., Tosi, L., Lavelle, F.: Iron(III)-adriamycin and iron(III)-daunorubicin complexes: physicochemical characteristics, interaction with DNA, and antitumor activity. Biochemistry 24, 284–289 (1985) CrossRefGoogle Scholar
  8. 8.
    Kellogg, G.E., Scarsdale, J.N., Fornari, F.A.: Identification and hydropathic characterization of structural features affecting sequence specificity for doxorubicin intercalation into DNA double-stranded polynucleotides. Nucleic Acids Res. 26, 4721–4732 (1998) CrossRefGoogle Scholar
  9. 9.
    Zhang, H.M., Li, N.Q.: Electrochemical studies of the interaction of adriamycin to DNA. J. Pharm. Biomed. Anal. 22, 67–73 (2000) CrossRefGoogle Scholar
  10. 10.
    Lown, J.W., Sim, S.-K., Majumdar, K.C.: Strand scission of DNA by bound adriamycin and daunorubicin in the presence of reducing agents. Biochem. Biophys. Res. Commun. 76, 705–710 (1977) CrossRefGoogle Scholar
  11. 11.
    Ferrans, V.J.: Overview of cardiac pathology in relation to anthracycline cardiotoxicity. Cancer Treat. Rep. 62, 955–961 (1978) Google Scholar
  12. 12.
    Abraham, R., Basser, R.L., Green, M.D.: A risk-benefit assessment of anthracycline antibiotics in antineoplastic therapy. Drug Safety 15, 406–429 (1996) CrossRefGoogle Scholar
  13. 13.
    Stathopoulos, G.P., Malamos, N.A., Dontas, I., Deliconstantinos, G., Perrea-Kotsarelis, D., Karayannacos, P.E.: Inhibition of adriamycin cardiotoxicity by 5-fluorouracil: A potential free oxygen radical scavenger. Anticancer Res. 18, 4387–4392 (1998) Google Scholar
  14. 14.
    Guin, P.S., Das, S., Mandal, P.C.: Electrochemical reduction of sodium 1,4-dihydroxy-9,10-anthraquinone-2-sulphonate in aqueous and aqueous dimethyl formamide mixed solvent: A cyclic voltametric study. Int. J. Electrochem. Sci. 3, 1016–1028 (2008) Google Scholar
  15. 15.
    Guin, P.S., Das, S., Mandal, P.C.: Sodium 1,4-dihydroxy–9,10-anthraquinone–2-sulphonate interacts with calf thymus DNA in a way that mimics anthracycline antibiotics: An electrochemical and spectroscopic study. J. Phys. Org. Chem. 23, 477–482 (2010) CrossRefGoogle Scholar
  16. 16.
    Priebe, W.: Targeting DNA with anthracyclines: the importance of the sugar moiety. Molecules 5, 299–301 (2000) CrossRefGoogle Scholar
  17. 17.
    Guin, P.S., Das, S., Mandal, P.C.: Studies on the formation of a complex of Cu(II) with sodium 1,4-dihydroxy–9,10-anthraquinone–2-sulphonate—An analogue of the core unit of anthracycline anticancer drugs and its interaction with calf thymus DNA. J. Inorg. Biochem. 103, 1702–1710 (2009) CrossRefGoogle Scholar
  18. 18.
    Guin, P.S., Das, S., Mandal, P.C.: Formation and characterization of Ni(II) complex of sodium 1,4-dihydroxy–9,10-anthraquinone–2-sulphonate, an analogue of the core unit of anthracycline antibiotics, by different spectroscopic techniques. Int. J. Pure Appl. Chem. 3, 283–290 (2008) Google Scholar
  19. 19.
    Toshima, K., Ouchi, H., Okazaki, Y., Kano, T., Moriguchi, M., Matsumura, S., Asai, A.: Artificial anthraquinone-carbohydrate hybrids: Design, synthesis, DNA binding and cytotoxicity. Angew. Chem. 36, 2748–2750 (1997) CrossRefGoogle Scholar
  20. 20.
    Warburg, O., Christian, W.: Isolation and crystallization of enolase. Biochem. Z. 310, 384–421 (1942) Google Scholar
  21. 21.
    Chakraborti, S., Bhattacharyya, B., Dasgupta, D.: Interaction of mithramycin and chromomycin A3 with d(TAGCTAGCTA)2: Role of sugars in antibiotic-DNA recognition. J. Phys. Chem. B 106, 6947–6953 (2002) CrossRefGoogle Scholar
  22. 22.
    Mir, M.A., Majee, S., Das, S., Dasgupta, D.: Association of chromatin with anticancer antibiotics, methramycin and chromomycin A 3. Bioorg. Med. Chem. Lett. 11, 2791–2801 (2003) CrossRefGoogle Scholar
  23. 23.
    Cantor, C., Schimmel, P.R.: Biophysical Chemistry, vol. 2. Freeman, San Francisco (1980) Google Scholar
  24. 24.
    Takenaka, I., Ihara, T., Takagi, M.: Bis-9-acridinyl derivative containing a viologen linker chain: electrochemically active intercalator for reversible labeling of DNA. J. Chem. Soc. Chem. Commun. 1485–1487 (1990) Google Scholar
  25. 25.
    Long, E.C., Barton, J.K.: On demonstrating DNA intercalation. Acc. Chem. Res. 23, 271–273 (1990) CrossRefGoogle Scholar
  26. 26.
    Pyle, A.M., Rehmann, J.P., Meshoyrer, R., Kumar, C.V., Turro, N.J., Barton, J.K.: Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J. Am. Chem. Soc. 111, 3051–3058 (1989) CrossRefGoogle Scholar
  27. 27.
    Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, pp. 239–240. Kluwer Academic, New York (1999) Google Scholar
  28. 28.
    Zhong, W., Yu, J.S., Huang, W.L., Ni, K.Y., Liang, Y.Q.: Spectroscopic studies of interaction of chlorobenzylidine with DNA. Biopolymers 62, 315–323 (2001) CrossRefGoogle Scholar
  29. 29.
    Frezard, F., Garnier-Suillerot, A.: Comparison of anthracycline derivatives to purified DNA and to cell nuclei. Biochim. Biophys. Acta 1036, 121–127 (1990) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Partha Sarathi Guin
    • 1
    • 2
    • 3
  • Saurabh Das
    • 2
  • Parikshit Chandra Mandal
    • 1
  1. 1.Chemical Sciences DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  2. 2.Department of ChemistryJadavpur UniversityKolkataIndia
  3. 3.Department of ChemistryShibpur Dinobundhoo Institution (College)HowrahIndia

Personalised recommendations