Advertisement

Journal of Solution Chemistry

, Volume 40, Issue 1, pp 154–163 | Cite as

Characterization of Dominant Hydrogen Bonded Complex Structures of Dielectric Polarization and Viscous Flow Processes in Glycerol–Formamide Binary Mixtures

  • R. J. Sengwa
  • Shobhna Choudhary
  • Vinita Khatri
Article

Abstract

The static permittivity and viscosity of glycerol–formamide (Gly–FA) binary mixtures were measured at eleven concentrations over the entire composition range and at temperatures T=288.15, 303.15, 318.15 and 333.15 K. The excess static permittivity and excess viscosity of the mixtures were determined using the mole-fraction additive mixture law. Results indicated that the molecular dielectric polarization in Gly–FA mixtures is governed by 1:1 complexes with a decrease in number of H-bonded parallel aligned dipolar ordering at all of the investigated temperatures. The 2Gly:FA complexes facilitate the viscous flow process and the number of these complexes decreases with increasing temperature. The apparent activation energy of viscous flow, determined from Arrhenius plots, increases with increases of the Gly concentration in the mixtures. The electric-field-induced increment of the Helmholtz free energy and the entropy of these binary mixtures were determined from the temperature dependence of the static permittivity and its derivative, respectively.

Keywords

Static permittivity Viscosity Molecular interactions Thermodynamical parameters Glycerol Formamide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sengwa, R.J., Chaudhary, R., Mehrotra, S.C.: Dielectric behavior of propylene glycol–water mixtures studied by time domain reflectometry. Mol. Phys. 99, 1805–1812 (2001) CrossRefGoogle Scholar
  2. 2.
    Sengwa, R.J., Sankhla, S.: Dielectric properties of binary and ternary mixtures of alcohols: Analysis of H-bonded interaction in complex systems. J. Non-Cryst. Solids 353, 4570–4574 (2007) CrossRefGoogle Scholar
  3. 3.
    Sengwa, R.J., Sankhla, S., Shinyashiki, N.: Dielectric parameters and hydrogen bond interaction study of binary alcohol mixtures. J. Solution Chem. 37, 137–153 (2008) CrossRefGoogle Scholar
  4. 4.
    Reis, J.C.R., Iglesias, T.P., Douhéret, G., Davis, M.I.: The permittivity of thermodynamically ideal liquid mixtures and the excess relative permittivity of binary dielectrics. Phys. Chem. Chem. Phys. 11, 3977–3986 (2009) CrossRefGoogle Scholar
  5. 5.
    Kinart, C.M., Klimczak, M.: Thermodynamic and structural properties of binary mixtures of some glycols with 2-butoxyethanol at T=(293.15 and 303.15) K. J. Mol. Liq. 148, 132–139 (2009) CrossRefGoogle Scholar
  6. 6.
    Kinart, C.M., Maj, M., Kinart, W.J.: Study on the internal structure of some ethylene glycols with sulfolane binary mixtures by means of measuring their viscosities at T=303.15 K. Phys. Chem. Liq. 47, 487–494 (2009) CrossRefGoogle Scholar
  7. 7.
    Maximino, R.B.: Viscosity and density of binary mixtures of alcohols and polyols with three carbon atoms and water: Equation for the correlation of viscosities of binary mixtures. Phys. Chem. Liq. 47, 515–529 (2009) CrossRefGoogle Scholar
  8. 8.
    Kinart, C.M., Maj, M., Ćwiklińska, A., Kinart, W.J.: Densities, viscosities and relative permittivities of some n-alkoxyethanols with sulfolane at T=303.15 K. J. Mol. Liq. 139, 1–7 (2008) CrossRefGoogle Scholar
  9. 9.
    Chmielewska, A., Żurada, M., Klimaszewski, K., Bald, A.: Dielectric properties of methanol mixtures with ethanol, isomers of propanol and butanol. J. Chem. Eng. Data 54, 801–806 (2009) CrossRefGoogle Scholar
  10. 10.
    Kumbharkhane, A.C., Shinde, M.N., Mehrotra, S.C., Oshiki, N., Shinyashiki, N., Yagihara, S., Sudo, S.: Structural behavior of alcohol-1,4-dioxane mixtures through dielectric properties using TDR. J. Phys. Chem. A 113, 10196–10201 (2009) CrossRefGoogle Scholar
  11. 11.
    Iloukhani, H., Rakhsi, M.: Excess molar volumes, viscosities, and refractive indices for binary and ternary mixtures of {cyclohexanone (1) + N,N-dimethylacetamide (2) + N,N-dimethylethanolamine (3)} at (298.15, 308.15, and 318.15) K. J. Mol. Liq. 149, 86–95 (2009) CrossRefGoogle Scholar
  12. 12.
    Rivas, M.A., Iglesias, T.P.: On permittivity and density of the systems {triglyme + (dimethyl carbonate)} and formulation of ε in terms of volume or mole fraction. J. Chem. Thermodyn. 40, 1120–1130 (2008) CrossRefGoogle Scholar
  13. 13.
    Lago, A., Rivas, M.A., Legido, J., Iglesias, T.P.: Study of static permittivity and density of the systems {(n-nonane + monoglyme or diglyme)} at various temperatures. J. Chem. Thermodyn. 41, 257–264 (2009) CrossRefGoogle Scholar
  14. 14.
    Chaudhari, A., Chaudhari, H., Mehrotra, S.: Dielectric properties for the binary mixture of dimethylsulphoxide and dimethylacetamide with 2-nitrotoluene at microwave frequencies. Fluid Phase Equilib. 201, 107–118 (2002) CrossRefGoogle Scholar
  15. 15.
    Sudo, S., Oshiki, N., Shinyashiki, N., Yagihara, S., Kumbharkhane, A.C., Mehrotra, S.C.: Dielectric properties of ethyleneglycol-1,4-dioxane mixtures using TDR method. J. Phys. Chem. A 111, 2993–2998 (2007) CrossRefGoogle Scholar
  16. 16.
    Sengwa, R.J., Sankhla, S.: Characterization of heterogeneous interaction in binary mixtures of ethylene glycol oligomer with water, ethyl alcohol and dioxane by dielectric analysis. J. Mol. Liq. 130, 119–131 (2007) CrossRefGoogle Scholar
  17. 17.
    Sengwa, R.J., Madhvi, Sankhla, S., Sharma, S.: Characterization of heterogenous interaction behavior in ternary mixtures by dielectric analysis: equi-molar H-bonded binary polar mixtures in aqueous solutions. J. Solution Chem. 35, 1037–1055 (2006) CrossRefGoogle Scholar
  18. 18.
    Sengwa, R.J., Khatri, V., Sankhla, S.: Dielectric properties and hydrogen bonding interaction behavior in binary mixtures of glycerol with amides and amines. Fluid Phase Equilib. 266, 54–58 (2008) CrossRefGoogle Scholar
  19. 19.
    Sengwa, R.J., Khatri, V., Sankhla, S.: Dielectric behavior and hydrogen bond molecular interaction study of formamide-dipolar solvents binary mixtures. J. Mol. Liq. 144, 89–96 (2009) Google Scholar
  20. 20.
    Sengwa, R.J., Khatri, V., Sankhla, S.: Static dielectric constants and Kirkwood correlation factor of the binary mixtures of N-methylformamide with formamide, N,N-dimethylformamide and N,N-dimethylacetamide. J. Solution Chem. 38, 763–769 (2009) CrossRefGoogle Scholar
  21. 21.
    Sengwa, R.J., Sankhla, S., Khatri, V.: Dielectric constant and molecular association in binary mixtures of N,N-dimethylethanolamine with alcohols and amides. Fluid Phase Equilib. 285, 50–53 (2009) CrossRefGoogle Scholar
  22. 22.
    Sengwa, R.J., Sankhla, S., Khatri, V.: Dielectric characterization and molecular interactions behavior in binary mixtures of amides with dimethylsulphoxide and 1,4-dioxane. J. Mol. Liq. 151, 17–22 (2010) CrossRefGoogle Scholar
  23. 23.
    Sengwa, R.J., Khatri, V., Sankhla, S.: Structures and hydrogen bonding analysis of the binary mixtures of N,N-dimethylformamide with some dipolar aprotic and protic solvents by dielectric characterization. Indian J. Chem. A 48, 512–519 (2009) Google Scholar
  24. 24.
    Sengwa, R.J., Khatri, V., Sankhla, S.: Static dielectric constant, excess dielectric properties, and Kirkwood correlation factor of water–amides and water–amines binary mixtures. Proc. Indian Natl. Sci. Acad. 74, 67–72 (2008) Google Scholar
  25. 25.
    Sengwa, R.J., Sankhla, S., Khatri, V., Choudhary, S.: Static permittivity and molecular interactions in binary mixtures of ethanolamine with alcohols and amides. Fluid Phase Equilib. 293, 137–140 (2010) CrossRefGoogle Scholar
  26. 26.
    Sengwa, R.J., Sankhla, S., Khatri, V.: Static dielectric constants of the binary mixtures of N-methylformamide with water, ethyl alcohol, ethylene glycol, dimethylsulphoxide, acetone, and 1,4-dioxane. Philos. Mag. Lett. 90, 463–470 (2010) CrossRefGoogle Scholar
  27. 27.
    Sengwa, R.J., Khatri, V., Choudhary, S., Sankhla, S.: Temperature dependent static dielectric constant and viscosity behavior of glycerol–amide binary mixtures: characterization of dominant complex structures in dielectric polarization and viscous flow processes. J. Mol. Liq. 154, 117–123 (2010) CrossRefGoogle Scholar
  28. 28.
    Sengwa, R.J., Khatri, V.: Study of static permittivity and hydrogen bonded structures in amide–alcohol mixed solvents. Thermochim. Acta 506, 47–51 (2010) CrossRefGoogle Scholar
  29. 29.
    Wilke, G., Betting, H., Stockhausen, M.: Dielectric relaxation of binary mixtures of glycerol with three monohydric alcohols. Phys. Chem. Liq. 36, 199–205 (1998) CrossRefGoogle Scholar
  30. 30.
    Hill, N.E., Vaughan, W.E., Price, A.H., Davies, M.: Dielectric Properties and Molecular Behavior, pp. 316–317. Van Nostrand Reinhold, London (1969) Google Scholar
  31. 31.
    Ghosh, R., Choudhary, I.: Relaxation time and thermodynamical parameter of ethylene glycol and glycerol. Proc. Natl. Acad. Sci. India 51A, 471–476 (1981) Google Scholar
  32. 32.
    Scaife, B.K.P.: Principles of Dielectrics. Clarendon Press, Oxford (1998) Google Scholar
  33. 33.
    Jadżyn, J., Czechowski, G.: Prenematic behavior of the electric-field-induced increment of the basic thermodynamic quantities of isotropic mesogenic liquids of different polarity. J. Phys. Chem. B 111, 3727–3729 (2007) CrossRefGoogle Scholar
  34. 34.
    Jadżyn, J., Czechowski, G., Dejardin, J.L., Ginovska, M.: Contribution to understanding of the molecular dynamics in liquids. J. Phys. Chem. A 111, 8325–8329 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • R. J. Sengwa
    • 1
  • Shobhna Choudhary
    • 1
  • Vinita Khatri
    • 1
  1. 1.Dielectric Research Laboratory, Department of PhysicsJ.N.V. UniversityJodhpurIndia

Personalised recommendations