Journal of Solution Chemistry

, Volume 39, Issue 11, pp 1636–1652 | Cite as

Interactions of Diglycine in Aqueous Saccharide Solutions at Varying Temperatures: A Volumetric, Ultrasonic and Viscometric Study



Densities, viscosities and speeds of sound were measured for ternary mixtures of diglycine (0.05 to 0.30 mol⋅kg−1) in 2, 4 and 6 mass-% aqueous xylose, L(-)arabinose, and D(-)ribose solutions at 288.15, 298.15 and 308.15 K and at atmospheric pressures, using a DSA 5000 instrument. The limiting apparent molar volume, limiting apparent molar adiabatic compressibility and their corresponding slopes were computed using the density and speed of sound data. Corresponding transfer functions have also been determined. The viscosity data have been analyzed on the basis of the Jones-Dole equation. The viscosity B-coefficient and Gibbs energy of activation of viscous flow per mole of solvent and solute have been evaluated. Hydration numbers, pairwise and triplet interaction coefficients have also been evaluated from these data. The variations of these parameters with concentration and temperature clearly suggest the roles of diglycine and saccharides in solute–solvent interactions.


Diglycine Saccharides Apparent molar volume Apparent molar adiabatic compressibility Viscosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10953_2010_9620_MOESM1_ESM.doc (261 kb)
(DOC 261 kB)


  1. 1.
    Haq, I., O’Brien, R.R.J., Ladbury, J.E.: In: Raffa, R.B. (ed.) Drug-Receptor Thermodynamic: Introduction and Application, Chap. 5. Wiley, New York (2001) Google Scholar
  2. 2.
    Kharakoz, D.P.: Volumetric properties of proteins and their analogues in diluted water solutions. 2. Partial adiabatic compressibilities of amino acids at 15–70 °C. J. Phys. Chem. C 95, 5634–5642 (1991) CrossRefGoogle Scholar
  3. 3.
    Hedwig, G.R., Hoiland, H.: Thermodynamic properties of peptide solutions 9. Partial molar isentropic pressure coefficients in aqueous solutions of sequence isomeric tripeptides with a single –CH3 side-chain. J. Chem. Thermodyn. 25, 349–354 (1993) CrossRefGoogle Scholar
  4. 4.
    Sahayam, M., Hedwig, G.R.: Enthalpies of dilution of aqueous solutions of the amino acids d-threonine and d-asparagine at the temperature 298.15 K. J. Chem. Thermodyn. 26, 361–365 (1994) CrossRefGoogle Scholar
  5. 5.
    Bhat, R., Ahluwalia, J.C.: Partial molar heat capacities and volumes of transfer of some amino acids and peptides from water to aqueous sodium chloride solutions at 298.15 K. J. Phys. Chem. 89, 1099–1105 (1985) CrossRefGoogle Scholar
  6. 6.
    Chalikian, T.V., Sarvazyan, A.P., Breslauer, K.J.: Partial molar volumes, expansibilities, and compressibilities of α,ω-aminocarboxylic acids in aqueous solutions between 18 and 55 °C. J. Phys. Chem. 97, 13017–13026 (1993) CrossRefGoogle Scholar
  7. 7.
    Chalikian, T.V., Sarvazyan, A.P., Breslauer, K.: Hydration and partial compressibility of biological compounds. J. Biophys. Chem. 51, 89–109 (1994) CrossRefGoogle Scholar
  8. 8.
    Zhenning, Y., Wang, X., Xing, R., Wang, J.: Interactions of some dipeptides with sodium butyrate in aqueous solutions at 298.15 K: a volumetric and conductometric study. J. Chem. Eng. Data 54, 1787–1792 (2009) CrossRefGoogle Scholar
  9. 9.
    Liu, J.L., Hakin, A.W., Hedwig, G.R.: Volumetric properties of tripeptides with polar side chains: Partial molar volumes at T=298.15 K of some peptides of sequence gly-Xgly in aqueous solution. J. Chem. Thermodyn. 41, 1332–1338 (2009) Google Scholar
  10. 10.
    Pal, A., Chauhan, N.: Densities, speeds of sound and viscosities of L-alanine in aqueous fructose, maltose and lactose solutions at different temperatures. Ind. J. Chem. 48A, 1069–1077 (2009) Google Scholar
  11. 11.
    Banipal, T.S., Singh, G.: Thermodynamic study of solvation of some amino acids, diglycine and lysozyme in aqueous and mixed aqueous solutions. Thermochim. Acta 412, 63–83 (2004) CrossRefGoogle Scholar
  12. 12.
    Banipal, T.S., Sehgal, G.: Partial molal adiabatic compressibilities of transfer of some amino acids and peptides from water to aqueous sodium chloride and aqueous glucose solutions. Thermochim. Acta 262, 175–183 (1995) CrossRefGoogle Scholar
  13. 13.
    Mishra, A.K., Ahluwalia, J.C.: Apparent molal volumes of amino acids, N-acetylamino acids, and peptides in aqueous solutions. J. Phys. Chem. 88, 86–92 (1984) CrossRefGoogle Scholar
  14. 14.
    Singh, S.K., Kishore, N.: Partial molar volumes of amino acids and peptides in aqueous salt solutions at 250 °C and a correlation with stability of proteins in the presence of salts. J. Solution Chem. 32, 117–134 (2003) CrossRefGoogle Scholar
  15. 15.
    Pal, A., Chauhan, N.: Volumetric, viscometric, and acoustic behaviour of diglycine in aqueous saccharide solutions at different temperatures. J. Mol. Liq. 149, 29–36 (2009) CrossRefGoogle Scholar
  16. 16.
    Pal, A., Singh, N.: Volumetric and ultrasonic studies of diglycine in binary aqueous solutions of saccharide at 288.15, 298.15 and 308.15 K. J. Ind. Chem. Soc. 86, 1280–1294 (2009) Google Scholar
  17. 17.
    Franks, H.S., Evans, N.W.: Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507–532 (1945) CrossRefGoogle Scholar
  18. 18.
    Hepler, L.G.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969) CrossRefGoogle Scholar
  19. 19.
    Pal, A., Kumar, S.: Viscometric and volumetric studies of some amino acids in binary aqueous solutions of urea at various temperatures. J. Mol. Liq. 109, 23–31 (2004) CrossRefGoogle Scholar
  20. 20.
    Pal, A., Kumar, S.: Volumetric properties of l-alanine, and l-valine in aqueous sucrose solutions at T=(288.15 and 308.15) K. J. Chem. Thermodyn. 37, 1085–1092 (2005) CrossRefGoogle Scholar
  21. 21.
    Millero, F.J., Surdo, A.L., Shin, C.: The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25 °C. J. Phys. Chem. 82, 784–792 (1978) CrossRefGoogle Scholar
  22. 22.
    Lark, B.S., Patyar, P., Banipal, T.S.: Thermodynamic studies on the interactions of diglycine with magnesium chloride in aqueous medium at different temperatures. J. Chem. Thermodyn. 38, 1592–1605 (2006) CrossRefGoogle Scholar
  23. 23.
    Padova, J.: Ion–solvent interaction. II. Partial molar volume and electrostriction: a thermodynamic approach. J. Chem. Phys. 39, 1552–1557 (1963) CrossRefGoogle Scholar
  24. 24.
    Padova, J.: Solvation approach to ion solvent interaction. J. Chem. Phys. 40, 691–694 (1964) CrossRefGoogle Scholar
  25. 25.
    Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd edn. ACS Monograph Series, vol. 137. Reinhold, New York (1958) Google Scholar
  26. 26.
    Millero, F.J., Ward, G.K., Lepple, F.K., Haff, E.V.: Isothermal compressibility of aqueous sodium chloride, magnesium chloride, sodium sulfate, and magnesium sulfate solutions from 0 to 45 °C at 1 atm. J. Phys. Chem. 78, 1636–1643 (1974) CrossRefGoogle Scholar
  27. 27.
    Banipal, T.S., Kaur, D., Banipal, P.K., Singh, G.: Interactions of some peptides with sodium acetate and magnesium acetate in aqueous solutions at 298.15 K: A volumetric approach. J. Mol. Liq. 140, 54–60 (2008) CrossRefGoogle Scholar
  28. 28.
    Lin, G., Lin, R., Ma, L.: The limiting partial molar volume and apparent molar volume of glycylglycine in aqueous KCl solution at 298.15 and 308.15 K. Thermochim. Acta 430, 31–34 (2005) CrossRefGoogle Scholar
  29. 29.
    Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special references to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929) CrossRefGoogle Scholar
  30. 30.
    Dey, N., Saikia, B.K., Haque, N.: Viscosities of glycine and DL-alanine in water acetonitrile mixtures between 25 and 40 °C. Can. J. Chem. 58, 1512–1515 (1980) CrossRefGoogle Scholar
  31. 31.
    Feakins, D., Freemental, D.J., Lawrence, K.G.: Transition state treatment of the relative viscosity of electrolytic solutions. Applications to aqueous, non-aqueous and methanol + water systems. J. Chem. Soc., Faraday Trans. 1 70, 795–806 (1974) CrossRefGoogle Scholar
  32. 32.
    Galasstone, S., Laidler, K., Eyring, H.: The Theory of Rate Processes, p. 477. McGraw-Hill, New York (1941) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistryKurukshetra UniversityKurukshetraIndia

Personalised recommendations