Journal of Solution Chemistry

, Volume 39, Issue 11, pp 1665–1680 | Cite as

New Insights into Buffer-Ionic Salt Interactions: Solubilities, Transfer Gibbs Energies, and Transfer Molar Volumes of TAPS and TAPSO from Water to Aqueous Electrolyte Solutions



The solubilities of N-[tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid (TAPS) or N-[tris(hydroxymethyl)methyl]-3-amino-2-hydroxypropanesulfonic acid (TAPSO) in water and in aqueous solutions of CH3COOK (KAc), KBr, KCl, or NaCl were determined from density measurements at 298.15 K. The solubilities of TAPS in aqueous solution decrease with increasing concentration of the salts (salting-out effect), whereas those of TAPSO increase with increasing concentration of the salts (salting-in effect). The solubility and density data were further used to calculate the apparent transfer Gibbs energies, Δtr G, and transfer molar volumes, \(\Delta_{\mathrm{tr}}V_{\phi}^{\mathrm{o}}\), of these buffers from water to aqueous electrolyte solutions at 298.15 K. The contributions of various functional groups of TAPS, TAPSO, and the related buffers (tris(hydroxymethyl)aminomethane, TRIS, and N-tris[hydroxymethyl]-4-amino-butanesulfonic acid, TABS) to the transfer properties were systematically estimated from the calculated Δtr G and \(\Delta_{\mathrm{tr}}V_{\phi}^{\mathrm{o}}\).


Biological buffers Solubilities Aqueous electrolyte solutions Molecular interaction Transfer Gibbs energy Transfer molar volume 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Good, N.E., Winget, G.D., Winter, W., Connolly, T.N., Izawa, S., Singh, R.M.M.: Hydrogen ion buffers for biological research. Biochemistry 5, 467–477 (1966) CrossRefGoogle Scholar
  2. 2.
    Ferguson, W.J., Braunschweiger, K.I., Braunschweiger, W.R., Smith, J.R., McCormick, J.J., Wasmann, C.C., Jarvis, N.P., Bell, D.H., Good, N.E.: Hydrogen ion buffers for biological research. Anal. Biochem. 104, 300–310 (1980) CrossRefGoogle Scholar
  3. 3.
    Perrin, D.D., Dempsey, B.: Buffers for pH and Metal Ion Control, 1st edn. Wiley, New York (1974) Google Scholar
  4. 4.
    Valensi, G.: Definitions thermodynamique et operatoire des act! vites ioniques. Applications aux mesures de pH. Pure Appl. Chem. 31, 547–567 (1972) CrossRefGoogle Scholar
  5. 5.
    Lee, J.J., Ford, W.T.: Acceleration of o-iodosobenzoate-catalyzed hydrolysis of p-nitrophenyl diphenyl phosphate by cationic polymer colloids. J. Am. Chem. Soc. 116, 3753–3759 (1994) CrossRefGoogle Scholar
  6. 6.
    Thiela, T., Liczkowskib, L., Bissena, S.T.: New zwitterionic butanesulfonic acids that extend the alkaline range of four families of good buffers: evaluation for use in biological systems. J. Biochem. Biophys. Methods 37, 117–129 (1998) CrossRefGoogle Scholar
  7. 7.
    Nurok, D., Frost, M.C., Chenoweth, D.M.: Separation using planar chromatography with electroosmotic flow. J. Chromatogr. A 903, 211–217 (2000) CrossRefGoogle Scholar
  8. 8.
    Gomori, G.: Preparation of buffers for use in enzyme studies. Methods Enzym. 1, 138–146 (1955) CrossRefGoogle Scholar
  9. 9.
    Choi, H., Kim, Y.: Capillary electrophoresis of single-stranded DNA. Bull. Kor. Chem. Soc. 24, 943–947 (2003) CrossRefGoogle Scholar
  10. 10.
    Andrykovitch, M., Guo, W., Karen, M.R., Gu, Y., Anderson, D.E., Reshetnikova, L.S., Knowlton, J.R., Waugh, D.S., Ji, X.: Crystallization and preliminary x-ray diffraction studies of NusG, a protein shared by the transcription and translation machines. Acta Crystallogr., D Biol. Crystallogr. 58, 2157–2158 (2002) CrossRefGoogle Scholar
  11. 11.
    Chiesl, T.N., Shi, W., Barron, A.E.: Poly(acrylamide-co-alkylacrylamides) for electrophoretic DNA purification in microchannels. Anal. Chem. 77, 772–779 (2005) CrossRefGoogle Scholar
  12. 12.
    Silva, A.R., Cardoso, R.C.S., Uchoa, D., Silva, L.D.M.: Effect of tris-buffer, egg yolk and glycerol on canine semen freezing. Vet. J. 164, 244–246 (2002) CrossRefGoogle Scholar
  13. 13.
    Koch, D.J., Rückert, C., Rey, D.A., Mix, A., Pühler, A., Kalinowski, J.: Role of the ssu and seu genes of corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. Appl. Environ. Microbiol. 71, 6104–6114 (2005) CrossRefGoogle Scholar
  14. 14.
    Lesignoli, F., Germini, A., Corradini, R., Sforza, S., Galaverna, G., Dossena, A., Marchelli, R.: Recognition and strand displacement of DNA oligonucleotides by peptide nucleic acids (PNAs): high-performance ion-exchange chromatographic analysis. J. Chromatogr. A 922, 177–185 (2001) CrossRefGoogle Scholar
  15. 15.
    Hansson, I.: A new set of pH-scales and standard buffers for sea water. Deep-Sea Res. 20, 479–491 (1973) Google Scholar
  16. 16.
    Brzozowski, A.M., Lawson, D.M., Turkenburg, J.P., Bisgaard-Frantzen, H., Svendsen, A., Borchert, T.V., Dauter, Z., Wilson, K.S., Davies, G.J.: Structural analysis of a chimeric bacterial α-amylase. High-resolution analysis of native and ligand complexes. Biochemistry 39, 9099–9107 (2000) CrossRefGoogle Scholar
  17. 17.
    Knapp, S., Rüdiger, A., Antranikian, G., Ladenstein, R.: Crystallization and preliminary crystallographic analysis of an amylopullulanase from the hyperthermophilic archaeon pyrococcus woese. Proteins 23, 595–597 (1995) CrossRefGoogle Scholar
  18. 18.
    Campos, A., Matsumura, P., Volz, K.J.: Crystallization and preliminary x-ray analysis of FlhD from escherichia coli. Struct. Biol. 123, 269–271 (1998) CrossRefGoogle Scholar
  19. 19.
    Iguer-Ouada, M., Verstegen, J.P.: Long-term preservation of chilled canine semen: effect of commercial and laboratory prepared extenders. Theriogenology 55, 671–684 (2001) CrossRefGoogle Scholar
  20. 20.
    Whitfield, M., Butler, R.A., Covington, A.K.: The determination of pH in estuarine waters: I. Definition of pH scales and the selection of buffers. Oceanol. Acta 8, 423–432 (1985) Google Scholar
  21. 21.
    Millero, F.J., Zhang, J.-Z., Fiol, S., Sotolongo, S., Roy, R.N., Lee, K., Mane, S.: The use of buffers to measure the pH of seawater. Mar. Chem. 44, 143–152 (1993) CrossRefGoogle Scholar
  22. 22.
    Taha, M., Lee, M.J.: Interaction of biological buffers with electrolytes: densities of aqueous solutions of two substituted aminosulfonic acids and ionic salts from T=(298.15 to 328.15) K. J. Chem. Therm. 41, 705–715 (2009) CrossRefGoogle Scholar
  23. 23.
    Taha, M., Lee, M.J.: Buffers and ionic salts: densities and solubilities of aqueous and electrolyte solutions of tris(hydroxymethyl)aminomethane and n-tris[hydroxymethyl]-4-amino-butanesulfonic acid. J. Chem. Eng. Data 54, 2501–2512 (2009) CrossRefGoogle Scholar
  24. 24.
    Taha, M., Lee, M.J.: Buffer interactions: densities and solubilities of some selected biological buffers in water and in aqueous 1,4-dioxane solutions. Biochem. Eng. J. 46, 334–344 (2009) CrossRefGoogle Scholar
  25. 25.
    Nozaki, Y., Tanford, C.: The solubility of amino acids and related compounds in aqueous urea solutions. J. Biol. Chem. 238, 4074–4081 (1963) Google Scholar
  26. 26.
    Nozaki, Y., Tanford, C.: The solubility of amino acids and related compounds in aqueous ethylene glycol solutions. J. Biol. Chem. 240, 3568–3573 (1965) Google Scholar
  27. 27.
    Nozaki, Y., Tanford, C.: The solubility of amino acids, diglycine, and triglycine in aqueous guanidine hydrochloride solutions. J. Biol. Chem. 245, 1648–1652 (1970) Google Scholar
  28. 28.
    Liu, Y., Bolen, D.W.: The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry 34, 12884–12891 (1995) CrossRefGoogle Scholar
  29. 29.
    Venkatesu, P., Lee, M.J., Lin, H.M.: Thermodynamic characterization of the osmolyte effect on protein stability and the effect of GdnHCl on the protein denatured state. J. Phys. Chem.  B 111, 9045–9056 (2007) CrossRefGoogle Scholar
  30. 30.
    Wouters, J., Stalke, D.: TAPSO at low temperature. Acta Cryst. C 52, 1684–1686 (1996) Google Scholar
  31. 31.
    McMeekin, T.L., Cohn, E.J., Wear, J.H.: Studies in the physical chemistry of amino acids, peptides and related substances. III. The solubility of derivatives of the amino acids in alcohol–water mixtures. J. Am. Chem. Soc. 57, 626–633 (1935) CrossRefGoogle Scholar
  32. 32.
    McMeekin, T.L., Cohn, E.J., Wear, J.H.: Studies in the physical chemistry of amino acids, peptides and related substances. VII. A comparison of the solubility of amino acids, peptides and their derivatives. J. Am. Chem. Soc. 58, 2173–2181 (1936) CrossRefGoogle Scholar
  33. 33.
    Cohn, E.J., Edsall, J.T.: Proteins, Amino Acids, and Peptides as Ions and Dipolar Ions. Reinhold, New York (1943) Google Scholar
  34. 34.
    Robinson, D.R., Jencks, W.P.: The effect of compounds of the urea-guanidinium class on the activity coefficient of acetyltetraglycine ethyl ester and related compounds. J. Am. Chem. Soc. 87, 2462–2470 (1965) CrossRefGoogle Scholar
  35. 35.
    Wang, A., Bolen, D.W.: A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry 36, 9101–9108 (1997) CrossRefGoogle Scholar
  36. 36.
    Ben-Naim, A.: Standard thermodynamics of transfer. Uses and misuses. J. Phys. Chem. 82, 792–803 (1978) CrossRefGoogle Scholar
  37. 37.
    Talukdar, H., Rudra, S., Kundu, K.K.: Thermodynamics of transfer of glycine, diglycine, and triglycine from water to aqueous solutions of urea, glycerol, and sodium nitrate. Can. J. Chem. 66, 461–468 (1988) CrossRefGoogle Scholar
  38. 38.
    Kirkwood, J.G.: Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J. Chem. Phys. 2, 351–361 (1934) CrossRefGoogle Scholar
  39. 39.
    Neuberger, A.: Dissociation constants and structures of zwitterions. Proc. R. Soc. Lond. A 158, 68–96 (1937) CrossRefGoogle Scholar
  40. 40.
    Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Dover, Mineola (2002) Google Scholar
  41. 41.
    Wenner, J.R., Bloomfield, V.A.: Buffer effects on EcoRV kinetics as measured by fluorescent staining and digital imaging of plasmid cleavage. Anal. Biochem. 268, 201–212 (1999) CrossRefGoogle Scholar
  42. 42.
    Roy, R.N., Robinson, R.A., Bates, R.G.: Thermodynamics of the two dissociation steps of N-tris (hydroxymethyl) methylglycine (Tricine) in water from 5 to 50 °C. J. Am. Chem. Soc. 95, 8231–8235 (1973) CrossRefGoogle Scholar
  43. 43.
    Cecchi, T., Cecchi, P.: The dipole approach in the ion-interaction chromatography of zwitterions-use of a potential approximation to obtain a simplified retention equation. Chromatographia 55, 279–282 (2002) CrossRefGoogle Scholar
  44. 44.
    Cecchi, T., Pucciarelli, F., Passamonti, P.: Ion-interaction chromatography of zwitterions. The fractional charge approach to model the influence of the mobile phase concentration of the ion-interaction reagent. Analyst 129, 1037–1046 (2004) CrossRefGoogle Scholar
  45. 45.
    Soto, A., Arce, A., Khoshkbarchi, M.K.: Experimental data and modeling of apparent molar volumes, isentropic compressibilities and refractive indices in aqueous solutions of glycine + NaCl. Biophys. Chem. 74, 165–173 (1998) CrossRefGoogle Scholar
  46. 46.
    Marcus, Y.: On the activity coefficients of charge-symmetrical ion pairs. J. Mol. Liq. 123, 8–13 (2006) CrossRefGoogle Scholar
  47. 47.
    Auton, M., Bolen, D.W., Rösgen, J.: Structural thermodynamics of protein preferential solvation: osmolyte solvation of proteins, aminoacids, and peptides. Proteins 73, 802–812 (2008) CrossRefGoogle Scholar
  48. 48.
    Pal, A., Kumar, S.: Volumetric properties of l-alanine, and l-valine in aqueous sucrose solutions at T=(288.15 and 308.15) K. J. Chem. Thermodyn. 37, 1085–1092 (2005) CrossRefGoogle Scholar
  49. 49.
    Friedman, H.L., Krishnan, C.V.: In: Franks, F. (ed.) Water: A Comprehensive Treatise, vol. 3. Plenum, New York (1973) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan

Personalised recommendations