Advertisement

Journal of Solution Chemistry

, Volume 39, Issue 9, pp 1341–1349 | Cite as

DFT Calculations on Hydrogen-Bonded Complexes Formed Between Guanine and Acrylamide

  • Xiuying Chen
  • Ying Zhang
  • Fang Yu
  • Haijun Wang
Article

Abstract

B3LYP/6-311+G* theoretical calculations have been employed to investigate the complexes involving hydrogen bonding between guanine and acrylamide. Nine stable conformers were obtained by geometry optimization without imaginary frequencies. The calculation results revealed that the stability of these complexes was accounted for by the intensity and numbers of hydrogen bonds between guanine and acrylamide, which was proved by the energy analysis and the topological properties at the critical points. In these optimized complexes, the complex with three hydrogen bonds was the most stable one because it offered the biggest binding energy. Clearly, the hydrogen bonds appear to be crucial in the stability of these complexes. This work will provide another nosogenetic interpretation besides the covalent interactions between DNA and acrylamide, which are of interest for studying DNA mutation.

Keywords

Hydrogen-bonded complexes Guanine Acrylamide Stabilization Density-functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yurenko, Y.P., Zhurakivsky, R.O., Samijlenko, S.P., Ghomi, M., Hovorun, D.M.: The whole of intramolecular H-bonding in the isolated DNA nucleoside thymidine: AIM electron density topological study. Chem. Phys. Lett. 447, 140–146 (2007) CrossRefGoogle Scholar
  2. 2.
    Gabriella, T., Francesco, B., Renzo, C.: DFT-molecular modeling analysis of C–H/N and C–H/S hydrogen bond type interactions in selected platinum–purine/pyrimidine complexes. J. Mol. Struct. (Theochem) 766, 61–72 (2006) CrossRefGoogle Scholar
  3. 3.
    Watson, J.D., Crick, F.H.C.: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature (London, United Kingdom) 171, 737–738 (1953) CrossRefGoogle Scholar
  4. 4.
    Zhang, S., Li, H., Yang, P., Li, S.: Geometries and properties of guanine–BH3 complex: an investigation with density functional theory (DFT) method. J. Mol. Struct. (Theochem) 682, 47–53 (2004) CrossRefGoogle Scholar
  5. 5.
    Shukla, M.K., Leszczynski, J.: Spectral origins and ionization potentials of guanine tautomers: theoretical elucidation of experimental findings. Chem. Phys. Lett. 429, 261–265 (2006) CrossRefGoogle Scholar
  6. 6.
    Liang, W., Li, H., Hu, X., Han, J.: Systematic theoretical investigations on all of the tautomers of guanine: from both dynamics and thermodynamics viewpoint. Chem. Phys. 328, 93–102 (2006) CrossRefGoogle Scholar
  7. 7.
    Leão, M.B.C., Longo, R.L., Pavão, A.C.: A molecular orbital analysis of the DNA bases. J. Mol. Struct. (Theochem) 490, 145–153 (1999) CrossRefGoogle Scholar
  8. 8.
    Koyama, N., Sakamoto, H., Sakuraba, M., Koizumi, T., Takashima, Y., Hayashi, M., Matsufuji, H., Yamagata, K., Masuda, S., Kinae, N., Honma, M.: Genotoxicity of acrylamide and glycidamide in human lymphoblastoid TK6 cells. Mutat. Res. 603, 151–158 (2006) Google Scholar
  9. 9.
    Parzefall, W.: Minireview on the toxicity of dietary acrylamide. Food Chem. Toxicol. 46, 1360–1364 (2008) CrossRefGoogle Scholar
  10. 10.
    Maniére, I., Godard, T., Doerge, D.R., Churchwell, M., Guffroy, M., Laurentie, M., Poul, J.M.: DNA damage and DNA adduct formation in rat tissues following oral administration of acrylamide. Mutat. Res. 580, 119–129 (2005) Google Scholar
  11. 11.
    Boys, S.F., Bernardi, F.: Calculations of small molecular interactions by differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970) CrossRefGoogle Scholar
  12. 12.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A.Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian03. Gaussian. Inc., Pittsburgh (2003) Google Scholar
  13. 13.
    Biegler-Konig, F., Bader, R.F.: AIM 2000, Version 2 (2002) Google Scholar
  14. 14.
    Zefirov, Y.V.: Van der Waals atomic radii of metals of the first three groups of the periodic chart. Z. Neorg. Khim. 45, 1691–1693 (2000) Google Scholar
  15. 15.
    Dean, J.A.: Lange’s Handbook of Chemistry, 15th edn. World Books, Beijing (1999) Google Scholar
  16. 16.
    Bader, R.F.W.: Atoms in Molecules. A Quantum Theory. Clarendon, Oxford (1990) Google Scholar
  17. 17.
    Bader, R.F.W.: A bond path: a universal indicator of bonded interactions. J. Phys. Chem. A 102, 7314–7323 (1998) Google Scholar
  18. 18.
    Yang, Y., Zhang, W., Pei, S., Shao, J., Huang, W., Gao, X.: Blue-shifted and red-shifted hydrogen bonds: theoretical study of the CH3CHO–NH3 complexes. J. Mol. Struct. (Theochem) 732, 33–37 (2005) CrossRefGoogle Scholar
  19. 19.
    Gur’yanova, N., Gol’dshtein, I.P., Romm, I.P.: The Donor–Acceptor Bond. Wiley, New York (1975) Google Scholar
  20. 20.
    Garau, C., Frontera, A., Quinonero, D., Ballester, P., Costa, A., Deya, P.M.: A topological analysis of the electron density in anion-interactions. ChemPhysChem 4, 1344–1348 (2003) CrossRefGoogle Scholar
  21. 21.
    Szefczyk, B., Sokalski, W.A., Leszczynski, J.: Optimal methods for calculation of the amount of intermolecular electron transfer. J. Chem. Phys. 117, 6952–6958 (2002) CrossRefGoogle Scholar
  22. 22.
    Breneman, C.M., Wiberg, K.B.: Determining atom-centered monopoles from molecular electrostatic potentials: the need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361–373 (1990) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xiuying Chen
    • 1
  • Ying Zhang
    • 1
  • Fang Yu
    • 1
  • Haijun Wang
    • 1
  1. 1.School of Chemical and Material EngineeringJiangnan UniversityJiangsuChina

Personalised recommendations