Journal of Solution Chemistry

, Volume 39, Issue 8, pp 1113–1121 | Cite as

Interaction Between Poly-N-Vinylpirrolidone, 5,10,15,20-Tetraphenylporphyrin and 5,10,15,20-Tetra(4′-Hydroxy-3′,5′-Di-Tret-Butilphenyl)-21h,23h-Porphyrin

  • Natalia S. Lebedeva
  • Tatyana E. Popova
  • Alexander S. Semeykin


The interaction between poly-N-vinylpirrolidone, 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra(4′-hydroxy-3′,5′-di-tret-butilphenyl)-21H,23H-porphyrin was studied by means of electron absorption spectroscopy, IR spectroscopy and isothermal titration calorimetry. It was found that in the case of 5,10,15,20-tetra(4′-hydroxy-3′,5′-di-tret-butilphenyl)-21H,23H-porphyrin a stable complex with poly-N-vinylpirrolidone is formed. Reaction sites which are responsible for porphyrin immobilization on the polymer surface were specified. In the case of 5,10,15,20-tetraphenylporphyrin no stable complex with poly-N-vinylpirrolidone is formed.


Porphyrins Poly-N-vinylpirrolidone Electron absorption spectroscopy IR spectra Isothermal titration calorimetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Filyasova, A.I., Kudelina, I.A., Feofanov, A.V.: A spectroscopic study of the interaction of tetrasulfonated aluminum phthalocyanine with human serum albumin. J. Mol. Struct. 565, 173–178 (2001) CrossRefGoogle Scholar
  2. 2.
    Jori, G.J.: Tumour photosensitizers: approaches to enhance the selectivity and efficiency of photodynamic therapy. J. Photochem. Photobiol. B 36, 87–92 (1996) CrossRefGoogle Scholar
  3. 3.
    Filippis, M.P., Dei, D., Fanetti, L., Roncucci, G.: Synthesis of a new water-soluble octa-cationic phthalocyanine derivative for PDT. Tetrahedron Lett. 49, 9143–9148 (2000) CrossRefGoogle Scholar
  4. 4.
    Oda, K., Ogura, S., Okira, I.: Preparation of a water-soluble fluorinated zinc phthalocyanine and its effect for photodynamic therapy. J. Photochem. Photobiol. B 59, 20–25 (2000) CrossRefGoogle Scholar
  5. 5.
    Dhami, S., Phillips, D.: Comparison of the photophysics of an aggregating and non-aggregating aluminium phthalocyanine system incorporated into unilamellar vesicles. J. Photochem. Photobiol. A 100, 77–82 (1996) CrossRefGoogle Scholar
  6. 6.
    Plate, N.A., Vasiliev, A.E.: Physiological Active Polymers. Khimia, Moskva (1986) Google Scholar
  7. 7.
    Batyrbekov, E.O., Moshcewich, S.A., Zhybanov, B.A.: Polymeric Durable Action Drugs. KazGosINTI, Almaty (1995) Google Scholar
  8. 8.
    Semeykin, A.S., Koifman, O.I., Berezin, B.D.: Advanced method of synthesis of substituted tetraphenylporphyrins. Khimia Geterotcicl. Soyedin. 798–801 (1986) Google Scholar
  9. 9.
    Kiev, K.O. (ed.): Brief Handbook on Chemistry. Naykova Dumka, Kiev (1974) Google Scholar
  10. 10.
    Youan, T.-Z.: Determination of Molecular Weights of Polymers. Izdatelstvo Inostrannoi literaturi, Moskva (1962) Google Scholar
  11. 11.
    Lebedeva, N.Sh., Mikhailovskii, K.V., Vyugin, A.I.: A differential automatic titration calorimeter. Zh. Fiz. Chim. 75, 1147–1151 (2001) [Russ. J. Phys. Chem. (Engl. Transl.) 75, 1045–1049 (2001)] Google Scholar
  12. 12.
    Lebedeva, N.Sh., Pavlycheva, N.A., Vyugin, A.I.: The thermodynamic characteristics of interactions between zinc(II)tetraphenylporphyrin and linear and cyclic ethers, aldehydes, and ketones. Zh. Fiz. Chim. 77, 426–429 (2003) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Natalia S. Lebedeva
    • 1
  • Tatyana E. Popova
    • 1
  • Alexander S. Semeykin
    • 2
  1. 1.Institute of Solution Chemistry of Russian Academy of ScienceIvanovoRussia
  2. 2.State University of Chemistry and TechnologyIvanovoRussia

Personalised recommendations