Journal of Solution Chemistry

, Volume 39, Issue 7, pp 967–986 | Cite as

Acoustical Studies of Binary Liquid Mixtures of Cyclopentane with 1-Alkanol at Different Temperatures and Different Approaches for Ideal Mixing Laws



Speeds of sound have been measured in liquid mixtures of cyclopentane with 1-propanol, with 1-pentanol, and with 1-heptanol across the entire composition range at temperatures of (298.15, 308.15 and 318.15) K and atmospheric pressure. The experimental speed of sound data were used to estimate the isentropic compressibility κ S for all mixtures. The molar volumes were multiplied by the corresponding isentropic compressibilities to obtain estimates of the molar compressibilities K S,m. The corresponding \(K_{S,\mathrm{m}}^{\mathrm{E}}\) values have also been calculated. Theoretical values of the speeds of sound were estimated using theories and empirical relations. Deviations of the speed of sound, u D, from the values calculated by different approaches for ideal mixing have been obtained for all mole fractions.


Speed of sound Cyclopentane 1-Alkanol Binary liquid mixtures Isentropic compressibility Ideal mixing laws 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pal, A., Dass, G.: Speeds of sound and isentropic functions of triethylene glycol monoethyl ether—n-alcohol mixtures at 298.15 K. J. Ind. Chem. Soc. 76, 446–451 (1999) Google Scholar
  2. 2.
    Ali, A., Nain, A.K.: Study of molecular interactions in non-aqueous binary liquid mixtures through ultrasonic measurements. J. Pure Appl. Ultrason. 22, 10–15 (2000) Google Scholar
  3. 3.
    Aralaguppi, M.I., Baragi, J.G.: Physicochemical and excess properties of the binary mixtures of methylcyclohexane + ethanol, + propan-1-ol, + propan-2-ol, + butan-1-ol, + 2-methyl-1-propanol, or 2-methyl-1-butanol at T=(298.15,303.15 and 308.15) K. J. Chem. Thermodyn. 38, 434–442 (2006) CrossRefGoogle Scholar
  4. 4.
    Iloukhani, H., Rezaei-Sameti, M., Zarei, H.A.: Volumetric and viscometric studies of molecular interactions of the ternary system toluene (1) + cyclohexane (2) + n-hexane (3) at 298.15 K. Thermochim. Acta 438, 9–15 (2005) CrossRefGoogle Scholar
  5. 5.
    George, J., Sastry, N.V.: Partial excess molar volumes, partial excess isentropic compressibilities and relative permittivities of water + ethane-1, 2-diol derivative and water + 1,2-dimethoxyethane at different temperatures. Fluid Phase Equilib. 216, 307–321 (2004) CrossRefGoogle Scholar
  6. 6.
    Garcia, B., Alcalde, R., Leal, J.M., Matos, J.S.: Formamide—(C1–C5)alkan-1-ols solvent systems. J. Chem. Soc. Faraday Trans. 92, 3347–3352 (1996) CrossRefGoogle Scholar
  7. 7.
    Oswal, S.L., Desai, H.S.: Studies of viscosity and excess molar volume of binary mixtures: 1. Propylamine + 1-alkanol mixtures at 303.15 and 313.15 K. Fluid Phase Equilib. 149, 359–376 (1998) CrossRefGoogle Scholar
  8. 8.
    Prakash, S., Sivanarayana, K., Prakash, O.: Thermodynamic and transport properties of binary liquid systems. Can. J. Chem. 58, 942–945 (1980) CrossRefGoogle Scholar
  9. 9.
    Kannappan, V., Jesu Raja, C.X., Jayasanthi, R.: Ultrasonic studies on molecular interactions of certain carbonyl compounds in n-hexane and chloroform solution. Indian J. Pure Appl. Phys. 41, 690–695 (2003) Google Scholar
  10. 10.
    Kumar, H., Kumar, B., Kumar, A., Angmo, T., Yadav, S.: Densities and excess molar volumes of cyclopentane (1) + 1-alkanol (2) systems at (298.15 and 308.15) K. J. Chem. Eng. Data 54, 165–167 (2009) CrossRefGoogle Scholar
  11. 11.
    Douheret, G., Davis, M.I., Reis, J.C.R., Blandamer, M.J.: Isentropic compressibilities—Experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures. Chem. Phys. Chem. 2, 148–161 (2001) Google Scholar
  12. 12.
    Benson, G.C., Kiyohara, O.: Evaluation of excess isentropic compressibilities and isochoric heat capacities. J. Chem. Thermodyn. 11, 1061–1064 (1979) CrossRefGoogle Scholar
  13. 13.
    Nath, J.: Speeds of sound in and isentropic compressibilities of (n-butanol + n-pentane) at T=298.15 K, and (n-butanol + n-hexane, or n-heptane, or n-octane, or 2,2,4-trimethylpentane) at T=303.15 K. J. Chem. Thermodyn. 30, 885–895 (1998) CrossRefGoogle Scholar
  14. 14.
    Pal, A., Singh, Y.P.: Speeds of sound and isentropic compressibilities of {xH(CH2)ν O(CH2)2O(CH2)2OH + (1−x)H2O} (ν=1, 2, and 4) at the temperature 298.15 K. J. Chem. Thermodyn. 28, 143–151 (1996) CrossRefGoogle Scholar
  15. 15.
    Nomoto, O., Endo, H.: Sound velocity in polyoxyethylene(6)laurylether aqueous solution. Bull. Chem. Soc. Jpn. 43, 3722–3728 (1970) CrossRefGoogle Scholar
  16. 16.
    Douheret, G., Pal, A., Davis, M.I.: Ultrasonic speeds and isentropic functions of (2-alkoxyethanol + water) at 298.15 K. J. Chem. Thermodyn. 22, 99–108 (1990) CrossRefGoogle Scholar
  17. 17.
    Pal, A.: Different approaches to calculate ideal expansibility, internal pressure and speeds of sound of binary liquid mixtures and their excess counterparts. Indian J. Chem. A 46, 755–759 (2007) Google Scholar
  18. 18.
    Pal, A.: Evaluation of excess isentropic compressibilities and viscosities of n-butoxyethanols with water at 298.15 K. Indian J. Chem. A 37, 109–113 (1998) Google Scholar
  19. 19.
    Papamatthaiakis, D., Aroni, F., Havredaki, V.: Isentropic compressibilities of (amide + water) mixture: a comparative study. J. Chem. Thermodyn. 40, 107–118 (2008) CrossRefGoogle Scholar
  20. 20.
    IUPAC commission on atomic weights and isotopic abundances 1985. Pure Appl. Chem. 58, 1677–1692 (1986) Google Scholar
  21. 21.
    Romero, C.M., Guzman, C., Gascon, I., Cea, P., Lopez, M.C.: Speeds of sound and isentropic compressibilities for binary mixtures of a cyclic ether with a cyclic compound at three temperatures. Int. J. Thermophys. 27, 760–776 (2006) CrossRefGoogle Scholar
  22. 22.
    Pereiro, A.B., Rodriguez, A., Canosa, J., Tojo, J.: Density and speed of sound of dialkyl carbonates with cyclopentane and methyl cyclohexane at several temperatures. J. Chem. Eng. Data 49, 1392–1399 (2004) CrossRefGoogle Scholar
  23. 23.
    Gonzalez, B., Calvar, N., Dominguez, A., Tojo, J.: Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T=(293.15, 298.15 and 303.15) K: New UNIFAC-VISCO interaction parameters. J. Chem. Thermodyn. 39, 322–334 (2007) CrossRefGoogle Scholar
  24. 24.
    Peleteiro, J., Gonzalez-Salgado, J., Cerdeirina, C.A., Valencia, J.L., Romani, L.: Thermodynamics of 1-alkanol + n-alkane mixtures: new data and predictions from NTGC model. Fluid Phase Equilib. 191, 83–97 (2001) CrossRefGoogle Scholar
  25. 25.
    Rodriguez, A., Canosa, J., Tojo, J.: Density, refractive index and speed of sound of binary mixtures (diethyl carbonate + alcohols) at several temperatures. J. Chem. Eng. Data 46, 1506–1515 (2001) CrossRefGoogle Scholar
  26. 26.
    Pal, A., Gaba, R.: Densities, excess molar volumes, speeds of sound and isothermal compressibilities of 2-(2-hexylethoxy)ethanol + n-alkanols system at temperatures between (288.15 and 308.15) K. J. Chem. Thermodyn. 10, 750–758 (2008) CrossRefGoogle Scholar
  27. 27.
    Verdier, E., Orchilles, A.V., Miguel, P.J., Martinez-Andreu, A.: Volumetric and ultrasonic studies of 1-ethyl-3-methylimidazolium trifluoromethane sulfonate ionic liquid with methanol, ethanol, 1-propanol and water at several temperatures. J. Chem. Eng. Data 52, 1468–1482 (2007) CrossRefGoogle Scholar
  28. 28.
    Benson, G.C., D’Arcy, P.J., Kiyohara, O.: Thermodynamics of aqueous mixtures of non-electrolytes II. Isobaric heat capacities of water-n-alcohol mixtures at 25 °C. J. Solution Chem. 9, 931–938 (1980) CrossRefGoogle Scholar
  29. 29.
    Benson, G.C., Kiyohara, O.: Thermodynamics of aqueous mixtures of non-electrolytes I. Excess volumes of water-n-alcohol mixtures at several temperatures. J. Solution Chem. 9, 791–804 (1980) CrossRefGoogle Scholar
  30. 30.
    Ribeiro, A.F., Langa, E., Mainer, A.M., Pardo, J.I., Urieta, J.S.: Excess molar enthalpy, density, and speed of sound for the mixtures β-pinene + 1- or 2-pentanol at (283.15, 298.15 and 313.15) K. J. Chem. Eng. Data 51, 1846–1851 (2006) Google Scholar
  31. 31.
    Hales, J.L., Ellender, J.H.: Liquid densities from 293 to 490 K of nine aliphatic alcohols. J. Chem. Thermodyn. 8, 1177–1184 (1976) CrossRefGoogle Scholar
  32. 32.
    Al-Jimaz, A.S., Al-Kandary, J.A., Abdul-Latif, Abdul-Haq, A.: Acoustical and excess properties of {chlorobenzene + 1-hexanol, or 1-heptanol, or 1-octanol, or 1-nonanol, or 1-decanol} at (298.15, 303.15, 308.15 and 313.15) K. J. Chem. Eng. Data 52, 206–214 (2007) CrossRefGoogle Scholar
  33. 33.
    Pal, A., Kumar, H., Kumar, A.: Speeds of sound, excess isentropic compressibility and apparent molar compressibility properties for binary mixtures of dipropylene glycol tert-butyl ether with methanol, 1-propanol, 1-pentanol and 1-heptanol at 298.15 K. Z. Phys. Chem. 221, 757–773 (2007) Google Scholar
  34. 34.
    Rowlinson, J.S.: Liquids, Liquid Mixtures. Butterworths, London (1971) Google Scholar
  35. 35.
    Jacobson, B.: Ultrasonic velocity in liquids and liquid mixtures. J. Chem. Phys. 20, 927–928 (1952) CrossRefGoogle Scholar
  36. 36.
    Dewan, R.K., Gupta, C.M., Mehta, S.K.: Ultrasonic study of (ethylbenzene + n-alkanol). Acustica 65, 245–253 (1988) Google Scholar
  37. 37.
    Schaafs, W.: Ultrasonic velocity in organic solutions. Z. Phys. 105, 658–661 (1937) Google Scholar
  38. 38.
    Kinart, C.M., Kinart, W.J., Chekinska-Majak, D.: Relative permittivity, viscosity and speeds of sound for 2-ethocyethanol + butyl amine mixtures. J. Chem. Eng. Data 48, 1037–1039 (2003) CrossRefGoogle Scholar
  39. 39.
    Lara, J., Desnoyers, J.E.: Isentropic compressibilities of alcohol-water mixtures at 25 °C. J. Solution Chem. 10, 465–478 (1981) CrossRefGoogle Scholar
  40. 40.
    Savaroglu, G., Aral, E.: Densities, speeds of sound and isentropic compressibilities of the ternary mixture 2-propanol + acetone + cyclohexane and the constituent binary mixtures at 298.15 and 313.15 K. Fluid Phase Equilib. 215, 253–262 (2004) CrossRefGoogle Scholar
  41. 41.
    Utter, N., Kling, R.: Thermodynamics of liquid mixtures. Proc. C. R. Acad. Sci. Paris 227, 41–42 (1948) Google Scholar
  42. 42.
    Van Dael, W., Vangeel, E.: Abst. Pap. In: Proc. 1st International Conference on Calorimetry and Thermodynamics. Warsaw, Poland, p. 555 (1969) Google Scholar
  43. 43.
    Douheret, G., Khadir, A., Pal, A.: Thermodynamic characterization of the water + methanol system at 298.15 K. Thermochim. Acta 142, 219–243 (1989) CrossRefGoogle Scholar
  44. 44.
    Handa, Y.P., Halpin, C.J., Benson, G.C.: Ultrasonic speeds and isentropic compressibilities for (hexan-1-ol + n-alkane) at 298.15 K. J. Chem. Thermodyn. 13, 875–886 (1981) CrossRefGoogle Scholar
  45. 45.
    Benson, G.C., Kumasan, M.K.: Isentropic pressure derivative of the excess partial molar volume of a mixture. J. Chem. Thermodyn. 15, 799–800 (1983) CrossRefGoogle Scholar
  46. 46.
    Douheret, G., Salgado, C., Davis, M.I., Loya, J.: Ultrasonic speeds and isentropic functions of 2-(2-alkoxyethoxy)ethanol + water at 298.15 K. Thermochim. Acta 207, 313–328 (1992) CrossRefGoogle Scholar
  47. 47.
    Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948) CrossRefGoogle Scholar
  48. 48.
    Schaffs, W.: Problem of a theoretical calculation of velocity of sound for binary liquid mixtures. Acustica 33, 272–276 (1975) Google Scholar
  49. 49.
    Pal, A., Kumar, H.: Speeds of sound and isentropic compressibilities of mixtures containing dipropylene glycol monomethyl ether and n-alkanols at 298.15 K. Indian J. Phys. B 75, 419–426 (2001) Google Scholar
  50. 50.
    Nomoto, O.: Empirical formula for sound velocity in liquid mixtures. J. Phys. Soc. Jpn. 13, 1528–1532 (1958) CrossRefGoogle Scholar
  51. 51.
    Kalidoss, M., Srinivasamoorthy, R.: Ultrasonic study of ternary liquid mixtures of cyclohexane + 1, 2-dichloromethane + n-propanol + n-butanol. J.  Pure Appl. Ultrason. 19, 9–15 (1997) Google Scholar
  52. 52.
    Assarson, P., Eirich, F.R.: Preparation of amides in aqueous solutions. I. Viscosity and density changes of amide-water systems. An analysis of volume deficiencies of mixtures based on molecular size differences (mixing of hard spheres). J. Phys. Chem. 72, 2710–2719 (1968) CrossRefGoogle Scholar
  53. 53.
    Fort, R.J., Moose, W.R.: Adiabatic compressibilities of binary liquid mixtures. Trans. Faraday Soc. 61, 2102–2111 (1965) CrossRefGoogle Scholar
  54. 54.
    Ajhagiri, S., Jayakumar, S., Padmanaban, R., Gunasekran, S., Srinivasan, S.: Acoustic and thermodynamic properties of binary liquid mixtures of benzaldehyde in hexane and cyclohexane. J. Solution Chem. 38, 441–448 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistryDr. B.R. Ambedkar National Institute of TechnologyJalandharIndia
  2. 2.Department of ChemistryNational Institute of TechnologyKurukshetraIndia

Personalised recommendations