Journal of Solution Chemistry

, Volume 39, Issue 2, pp 277–290 | Cite as

Experimental and Theoretical Determination of the Limiting Partial Molar Volume of Indole in CCl4, Tetrahydrofuran and Acetonitrile at 293.15 K: A Comparative Study with Benzimidazole and Benzothiophene

  • Ysaías J. Alvarado
  • Néstor Cubillán
  • Esker Chacín-Molero
  • Gladys Ferrer-Amado
  • Paola Hernández-Labarca
  • Wendy Velazco
  • José Ojeda-Andara
  • Yovani Marrero-Ponce
  • Federico Arrieta


The partial molar volumes of indole(Ind) at infinite dilution (\(V_{2}^{\infty}\)) in carbon tetrachloride (CCl4), acetonitrile (ACN) and tetrahydrofuran (THF) as solvents, were estimated from densitometry measurements at 293.15 K. The results indicate that \(V_{2}^{\infty}\mbox{(ACN)}>V_{2}^{\infty}\mbox{(CCl$_{4}$)}\) \(\approx V_{2}^{\infty}\mbox{(THF)}\). The values determined in this study are close to the values calculated from reported density for Ind in the solid state. In order to make a comparison the partial molecular volume of benzimidazole (Bim) and benzothiophene (BT) in solvents with appropriate solubility were measured too, and the results have revealed that \(V_{2}^{\infty}\mbox{(BT)}>V_{2}^{\infty}\mbox{(Ind)}\) in CCl4 and \(V_{2}^{\infty}\mbox{(Ind)}>V_{2}^{\infty}\mbox{(Bim)}\) in THF. In this work the role of solvent reorganization around to solute cavity, and specific and nonspecific interactions on the volumetric behavior of these molecules in solution are discussed using the Terasawa-Itsuki-Arakawa model, the Lee-Graziano model, molar volumes of solutes calculated at the DFT-B3LYP/cc-pVTZ and aug-cc-pVTZ level in the gas phase and considering solvent presence with the Onsager’s reaction field, and the van der Waals volume. This analysis suggests that the molecular volumes of solutes are overestimated by the quantum methods employed in this work and that the volumetric contribution from the van der Waals components to the limiting partial molecular volumes of solutes is important, with the exception of Ind in CCl4 where the solvent reorganization is the dominant factor.


Apparent molecular volume DFT-B3LYP SCRF SPT and indole 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10953_2010_9511_MOESM1_ESM.pdf (562 kb)
Residuals plots of linear(square) and quadratic (circle) fits of density ρ(g⋅cm−3) with molar concentration (mol⋅dm−3) (pdf 102kb)


  1. 1.
    Sharma, N., Lain, S.K., Rastogi, R.C.: Solvatochromic study of excited state dipole moments of some biologically active indoles and tryptamines. Spectrochim. Acta Part A 66, 171–176 (2007) CrossRefGoogle Scholar
  2. 2.
    Ramla, M.M., Omar, M.A., El-Khamryb, A.-M.M., El-Diwani, H.I.: Synthesis and antitumor activity of 1-substituted-2-methyl-5-nitrobenzimidazoles. Bioorgan. Med. Chem. 14, 7324–7332 (2006) CrossRefGoogle Scholar
  3. 3.
    Hsu, J.C., Dev, A., Wing, A., Brew, C.T., Bjeldanes, L.F., Firestone, G.L.: Indole-3-carbinol mediated cell cycle arrest of LNCaP human prostate cancer cells requires the induced production of activated p53 tumor suppressor protein. Biochem. Pharmacol. 72, 1714–1723 (2006) CrossRefGoogle Scholar
  4. 4.
    Kim, Y.S., Milner, J.A.: Targets for indole-3-carbinol in cancer prevention. J. Nutr. Biochem. 16, 65–73 (2005) CrossRefGoogle Scholar
  5. 5.
    Pejov, L., Stefov, V., Soptrajanov, B.: DFT computational and experimental study of indole continuum solvation. Vibr. Spectrosc. 19, 435–439 (1999) CrossRefGoogle Scholar
  6. 6.
    Pejov, L.A.: Gradient-corrected density functional study of Indole self-association through N–H⋅⋅⋅ π hydrogen bonding. Chem. Phys. Lett. 339, 269–278 (2001) CrossRefGoogle Scholar
  7. 7.
    Parkanyi, C., Rao Oruganti, S., Abdelhamid, A.O., Von Szentpaly, L.: Dipole moments of indoles in their ground and the first singlet states. J. Mol. Struct. (Theochem.) 135, 105–116 (1986) CrossRefGoogle Scholar
  8. 8.
    Weiler-Feilchenfeld, H., Pullman, A., Berthod, H.: Experimental and quantum-chemical studies of the dipole moments of quinoline and indole. J. Mol. Struct. 6, 297–304 (1970) CrossRefGoogle Scholar
  9. 9.
    Morsy, M.A., Al-Kaldhi, M., Suwaiyan, A.: Normal vibrational mode analysis and assignment of benzimidazole by ab initio and density functional calculations and polarized infrared and Raman spectroscopy. J. Phys. Chem. A 106, 9196–9203 (2002) CrossRefGoogle Scholar
  10. 10.
    Krawzyk, S., Gdaniec, M.: Polymorph β of 1 H-benzimidazole. Acta Cryst. E61, o4116–o4118 (2005) Google Scholar
  11. 11.
    El-Azhary, A.A.: A DFT study of the geometries and vibrational spectra of indene and some of its heterocyclic analogues, benzofuran, benzoxazole, benzothiophene, benzothiazole, indole and indazole. Spectrochim. Acta A 55, 2437–2446 (1999) CrossRefGoogle Scholar
  12. 12.
    Borin, A.C., Serrano-Andres, L.: A theoretical study of the absorption spectra of indole, and its analogs: indene, benzimidazole, and 7-azaindole. Chem. Phys. Lett. 262, 253–265 (2000) Google Scholar
  13. 13.
    Lombardi, J.R.: Solvatochromic shifts: A reconsideration. J. Phys. Chem. 102, 2817–2823 (1998) Google Scholar
  14. 14.
    Escande, A., Lapasset, J., Faure, R., Vincent, E.J., Elguero, J.: Les benzazoles (Indazole, Benzimidazole, Benzotriazole) structure moleculaire et proprietes fondamentales. Tetrahedron 30, 2903–2909 (1974) CrossRefGoogle Scholar
  15. 15.
    Vasiltsova, T.V., Verevkin, S.P., Bich, E., Heintz, A., Bogel-Lukasik, R., Domanska, U.: Thermodynamic properties of mixtures containing ionic liquids. Activity coefficients of ethers and alcohols in 1-methyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) imide using the transpiration method. J. Chem. Eng. Data 50(1), 142–148 (2005) CrossRefGoogle Scholar
  16. 16.
    Kang, C.H., Yi, J.T.: Stark effect in the phase: Dipole moment of 7 azaindole in its ground and electronically excited states. Chem. Phys. Lett. 423, 7–12 (2006) CrossRefGoogle Scholar
  17. 17.
    Ilich, P., Haydock, C., Prendergast, F.G.: Electronic transitions in hydrated indole: A MD INDO/study. Chem. Phys. Lett. 158, 129–134 (1989) CrossRefGoogle Scholar
  18. 18.
    Grimme, S., Izgorodina, E.I.: Calculation of 0–0 excitation energies of organic molecules by CIS(D) quantum chemical methods. Chem. Phys. 305, 223–230 (2004) CrossRefGoogle Scholar
  19. 19.
    Assongo, C.K., Kabouchi, B., Nsangou, M., Tamanga, P.: Dimer complex UV absorption spectra of some nitrogen heterocycles molecules from atom monopole–dipole interaction model. J. Mol. Struct. (Theochem.) 726, 125–133 (2005) CrossRefGoogle Scholar
  20. 20.
    Waite, J., Papadopoulous, M.G.: Dependence of the polarizability, α, and hyperpolarizabilities, β and γ, of a series of nitrogen heterocyclics on their molecular structures. A comparative study. J. Phys. Chem. 94, 1755–1758 (1990) CrossRefGoogle Scholar
  21. 21.
    Cowley, E.G., Partington, J.R.: Studies in dielectric polarization. Part XV. The dipole moments of five-membered nitrogen ring compounds: indole, skatole, carbazole, isatin, and succinimide. J. Chem. Soc. 47–50 (1936) Google Scholar
  22. 22.
    Hansch, C., Steinmetz, W.E., Leo, A.J., Mekapati, S.B., Kurup, A.D.H.: On the role of polarizability in chemical-biological interactions. J. Chem. Inf. Comput. Sci. 43(1), 120–125 (2003) CrossRefGoogle Scholar
  23. 23.
    Soscún, H., Alvarado, Y., Hernández, J., Hernández, P., Atencio, R., Hinchliffe, A.: Experimental and theoretical determination of the dipole polarizability of dibenzothiophene. J. Phys. Org. Chem. 14, 709–715 (2001) CrossRefGoogle Scholar
  24. 24.
    Alvarado, Y.J., Cubillán, N.H., Labarca, P., Karam, A., Arrieta, F., Castellano, O., Soscún, H.: Dipole polarizability of the pyrazabole molecule in solution. J. Phys. Org. Chem. 15, 835–843 (2002) CrossRefGoogle Scholar
  25. 25.
    Alvarado, Y., Labarca, P., Karam, A., Arrieta, F., Castellano, O., Soscún, H.: Static and dynamic dipole polarizabilities of 2- and 3-methylthiophenes in solution: experimental and theoretical determination. J. Phys. Org. Chem. 15, 154–164 (2002) CrossRefGoogle Scholar
  26. 26.
    Alvarado, Y.J.H., Labarca, P., Cubillán, N., Osorio, E., Karam, A.: Solvent effect on electronic polarizability of benzonitrile. Z. Naturforsch. 58a(2), 68–74 (2003) Google Scholar
  27. 27.
    Alvarado, Y.J., Caldera-Luzardo, J., De La Cruz, C., Ferrer-Amado, G., Michelena, E., Silva, P.: Volumetric, electric, and magnetic properties of thioxanthen-9-one in aprotic solvents as revealed by high-precision densitometry, high-accuracy refractometry and magnetic susceptibility measurements and by DFT calculations. J. Solution Chem. 35, 29–49 (2006) CrossRefGoogle Scholar
  28. 28.
    Alvarado, Y.J., Caldera-Luzardo, J., Ferrer-Amado, G., Manzilla-Labarca, V., Michelena, E.: Determination of the apparent molar refraction and partial molar volume at infinite dilution of thiophene-, pyrrole- and Furan-2-carboxaldehyde phenylhydrazone derivatives in acetonitrile at 293.15 K. J. Solution Chem. 36(1), 1–11 (2007) CrossRefGoogle Scholar
  29. 29.
    Terasawa, S., Itsuki, H., Arakawa, S.: Contribution of hydrogen bonds to the partial molar volumes of nonionic solutes in water. J. Phys. Chem. 79(22), 2345–2351 (1975) CrossRefGoogle Scholar
  30. 30.
    Onsager, L.: Electric moments of molecules in liquids. J. Am. Chem. Soc. 58(8), 1486–1493 (1936) CrossRefGoogle Scholar
  31. 31.
    Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989) CrossRefGoogle Scholar
  32. 32.
    Kendall, R.A., Dunning, T.H., Jr., Harrison, R.J.: Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96(9), 6796–6806 (1992) CrossRefGoogle Scholar
  33. 33.
    Woon, D.E., Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98(2), 1358–1371 (1993) CrossRefGoogle Scholar
  34. 34.
    Bondi, A.: Van der Waals. Volumes and radii. J. Phys. Chem. 68, 441–451 (1964) CrossRefGoogle Scholar
  35. 35.
    Lee, B.: Partial molar volume from the hard-sphere mixture model. J. Phys. Chem. 87(1), 112–118 (1983) CrossRefGoogle Scholar
  36. 36.
    Graziano, G.: Partial molar volume of n-alcohols at infinite dilution in water calculated by means of scaled particle theory. J. Chem. Phys. 124(13), 134507 (2006) CrossRefGoogle Scholar
  37. 37.
    Snyder, C., Douglas, J.: Determination of the dielectric constant of nanoparticules.1. Dielectric measurements of buckminsterfullerene solutions. J. Phys. Chem. B 104, 11058–11065 (2000) CrossRefGoogle Scholar
  38. 38.
    Kell, G.S.: Isothermal compressibility of liquid water at 1 atm. J. Chem. Eng. Data 15, 119–122 (1970) CrossRefGoogle Scholar
  39. 39.
    Ruelle, P., Farina-Cuendet, A., Kesselring, U.W.: Changes of molar volume from solid to liquid and solution: The particular case of C60. J. Am. Chem. Soc. 118, 1777–1784 (1996) CrossRefGoogle Scholar
  40. 40.
    Aminabhavi, T.M., Patel, R.C., Jayadevappa, E.S., Prasad, B.R.: Excess volume and excess polarizability during mixing of binary solvents. J. Chem. Eng. Data 27, 50–53 (1982) CrossRefGoogle Scholar
  41. 41.
    Rudan-Tasic, D., Klofutar, C.: Apparent molar volume and expansibility of cyclohexanol in benzene and cyclohexane. Monatsch. Chem. 129, 1245–1257 (1998) Google Scholar
  42. 42.
    Wong, M.W., Wiberg, K.B., Frisch, M.J.: Ab initio calculation of molar volumes: Comparison with experimental and use in solvation models. J. Comp. Chem. 16(3), 385–394 (1995) CrossRefGoogle Scholar
  43. 43.
    Graziano, G.: Non-intrinsic contribution to the partial molar volume of cavities in water. Chem. Phys. Lett. 429(4–6), 420–424 (2006) CrossRefGoogle Scholar
  44. 44.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision D.02. Gaussian, Inc., Wallingford, CT (2004) Google Scholar
  45. 45.
    Redlich, O.: Molal volumes of solute. IV. J. Phys. Chem. 44(5), 619–629 (1940) CrossRefGoogle Scholar
  46. 46.
    Klofutar, C., Paljk, S., Golc-Teger, S.: Partial molar volumes and partial molar expansibilities of cholesterol in some aprotic solvents. Thermochim. Acta 196(2), 401–413 (1992) CrossRefGoogle Scholar
  47. 47.
    Millero, F.J.: Molal volumes of electrolytes. Chem. Rev. 71(2), 147–176 (1971) CrossRefGoogle Scholar
  48. 48.
    Conway, B.E., Ayranci, E.: Structural effect in the partial molar volumes and isentropic compressibilities of organic bases and their conjugates ions. J. Chem. Thermodyn. 20, 9–27 (1988) CrossRefGoogle Scholar
  49. 49.
    Oswal, S., Ijardar, S.: Studies of partial molar volumes of alkylamine in non-electrolyte solvents III: Alkyl amines in butanols at 303.15 K. J. Mol. Liq. 144(3), 115–123 (2009) CrossRefGoogle Scholar
  50. 50.
    Fucaloro, A., Pul, Y., Cha, K., Williams, A., Conrad, K.: Partial molar volumes and refractions of aqueous solutions of fructose, glucose, mannose, and sucrose at 15.00, 20.00, and 25.00°C. J. Solution Chem. 36(1), 61–80 (2007) CrossRefGoogle Scholar
  51. 51.
    Edward, J.: Molecular volumes and the Stokes-Einstein equation. J. Chem. Educ. 47(4), 261–270 (1970) CrossRefGoogle Scholar
  52. 52.
    Marcus, Y.: The sizes of molecules–revisited. J. Phys. Org. Chem. 16(7), 398–408 (2003) CrossRefGoogle Scholar
  53. 53.
    Kolling, O.W.: Polarizability–hyperpolarizability influences upon solvatochromism in polychloroalkane and polychloroalkene media. J. Phys. Chem. 100(2), 519–522 (1996) CrossRefGoogle Scholar
  54. 54.
    Alvarado, Y.J.H., Labarca, P., Cubillán, N., Osorio, E., Karam, A.: Influence of the dielectric medium on the carbonyl infrared absorption peak of acetylferrocene. Molecules 10, 457–474 (2005) CrossRefGoogle Scholar
  55. 55.
    Milischuk, A., Matyushov, D.V.: On the validity of dielectric continuum models in application to solvation in molecular solvents. J. Chem. Phys. 118(4), 1859–1862 (2003) CrossRefGoogle Scholar
  56. 56.
    Alvarado, Y.J., Cubillán, N.: Manuscript in preparation Google Scholar
  57. 57.
    Graziano, G.: Hydration thermodynamics of N-methylacetamide. J. Phys. Soc. Jpn. 69(11), 3720–3725 (2000) CrossRefGoogle Scholar
  58. 58.
    Sivolozhskaya, Y., Potkina, N., Korolev, V.: Comparative study of solvation of CCl4 in alcohol–alcohol and alcohol–alkane systems. Russ. J. Gen. Chem. 72(6), 864–869 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ysaías J. Alvarado
    • 1
    • 2
  • Néstor Cubillán
    • 1
  • Esker Chacín-Molero
    • 1
  • Gladys Ferrer-Amado
    • 2
  • Paola Hernández-Labarca
    • 1
  • Wendy Velazco
    • 1
  • José Ojeda-Andara
    • 1
  • Yovani Marrero-Ponce
    • 3
  • Federico Arrieta
    • 4
  1. 1.Laboratorio de Electrónica Molecular (LEM), Departamento de Química, Facultad Experimental de CienciasLa Universidad del ZuliaMaracaiboRepública Bolivariana de Venezuela
  2. 2.Departamento de Investigación y Tecnología de los Materiales y Ambiente (DITeMA)Instituto Venezolano de Investigaciones Científicas (IVIC)MaracaiboRepública Bolivariana de Venezuela
  3. 3.Laboratorio de Diseño de Fármacos, Departamento de Farmacia, Centro de Química Bio-activaUniversidad Central de las VillasSanta ClaraCuba
  4. 4.Laboratorio de Química Inorgánica Teórica, Departamento de Química, Facultad Experimental de CienciasLa Universidad del ZuliaMaracaiboRepública Bolivariana de Venezuela

Personalised recommendations