Skip to main content
Log in

Experimental and Theoretical Determination of the Limiting Partial Molar Volume of Indole in CCl4, Tetrahydrofuran and Acetonitrile at 293.15 K: A Comparative Study with Benzimidazole and Benzothiophene

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The partial molar volumes of indole(Ind) at infinite dilution (\(V_{2}^{\infty}\)) in carbon tetrachloride (CCl4), acetonitrile (ACN) and tetrahydrofuran (THF) as solvents, were estimated from densitometry measurements at 293.15 K. The results indicate that \(V_{2}^{\infty}\mbox{(ACN)}>V_{2}^{\infty}\mbox{(CCl$_{4}$)}\) \(\approx V_{2}^{\infty}\mbox{(THF)}\). The values determined in this study are close to the values calculated from reported density for Ind in the solid state. In order to make a comparison the partial molecular volume of benzimidazole (Bim) and benzothiophene (BT) in solvents with appropriate solubility were measured too, and the results have revealed that \(V_{2}^{\infty}\mbox{(BT)}>V_{2}^{\infty}\mbox{(Ind)}\) in CCl4 and \(V_{2}^{\infty}\mbox{(Ind)}>V_{2}^{\infty}\mbox{(Bim)}\) in THF. In this work the role of solvent reorganization around to solute cavity, and specific and nonspecific interactions on the volumetric behavior of these molecules in solution are discussed using the Terasawa-Itsuki-Arakawa model, the Lee-Graziano model, molar volumes of solutes calculated at the DFT-B3LYP/cc-pVTZ and aug-cc-pVTZ level in the gas phase and considering solvent presence with the Onsager’s reaction field, and the van der Waals volume. This analysis suggests that the molecular volumes of solutes are overestimated by the quantum methods employed in this work and that the volumetric contribution from the van der Waals components to the limiting partial molecular volumes of solutes is important, with the exception of Ind in CCl4 where the solvent reorganization is the dominant factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma, N., Lain, S.K., Rastogi, R.C.: Solvatochromic study of excited state dipole moments of some biologically active indoles and tryptamines. Spectrochim. Acta Part A 66, 171–176 (2007)

    Article  Google Scholar 

  2. Ramla, M.M., Omar, M.A., El-Khamryb, A.-M.M., El-Diwani, H.I.: Synthesis and antitumor activity of 1-substituted-2-methyl-5-nitrobenzimidazoles. Bioorgan. Med. Chem. 14, 7324–7332 (2006)

    Article  CAS  Google Scholar 

  3. Hsu, J.C., Dev, A., Wing, A., Brew, C.T., Bjeldanes, L.F., Firestone, G.L.: Indole-3-carbinol mediated cell cycle arrest of LNCaP human prostate cancer cells requires the induced production of activated p53 tumor suppressor protein. Biochem. Pharmacol. 72, 1714–1723 (2006)

    Article  CAS  Google Scholar 

  4. Kim, Y.S., Milner, J.A.: Targets for indole-3-carbinol in cancer prevention. J. Nutr. Biochem. 16, 65–73 (2005)

    Article  CAS  Google Scholar 

  5. Pejov, L., Stefov, V., Soptrajanov, B.: DFT computational and experimental study of indole continuum solvation. Vibr. Spectrosc. 19, 435–439 (1999)

    Article  CAS  Google Scholar 

  6. Pejov, L.A.: Gradient-corrected density functional study of Indole self-association through N–H⋅⋅⋅ π hydrogen bonding. Chem. Phys. Lett. 339, 269–278 (2001)

    Article  CAS  Google Scholar 

  7. Parkanyi, C., Rao Oruganti, S., Abdelhamid, A.O., Von Szentpaly, L.: Dipole moments of indoles in their ground and the first singlet states. J. Mol. Struct. (Theochem.) 135, 105–116 (1986)

    Article  Google Scholar 

  8. Weiler-Feilchenfeld, H., Pullman, A., Berthod, H.: Experimental and quantum-chemical studies of the dipole moments of quinoline and indole. J. Mol. Struct. 6, 297–304 (1970)

    Article  CAS  Google Scholar 

  9. Morsy, M.A., Al-Kaldhi, M., Suwaiyan, A.: Normal vibrational mode analysis and assignment of benzimidazole by ab initio and density functional calculations and polarized infrared and Raman spectroscopy. J. Phys. Chem. A 106, 9196–9203 (2002)

    Article  CAS  Google Scholar 

  10. Krawzyk, S., Gdaniec, M.: Polymorph β of 1 H-benzimidazole. Acta Cryst. E61, o4116–o4118 (2005)

    Google Scholar 

  11. El-Azhary, A.A.: A DFT study of the geometries and vibrational spectra of indene and some of its heterocyclic analogues, benzofuran, benzoxazole, benzothiophene, benzothiazole, indole and indazole. Spectrochim. Acta A 55, 2437–2446 (1999)

    Article  Google Scholar 

  12. Borin, A.C., Serrano-Andres, L.: A theoretical study of the absorption spectra of indole, and its analogs: indene, benzimidazole, and 7-azaindole. Chem. Phys. Lett. 262, 253–265 (2000)

    CAS  Google Scholar 

  13. Lombardi, J.R.: Solvatochromic shifts: A reconsideration. J. Phys. Chem. 102, 2817–2823 (1998)

    CAS  Google Scholar 

  14. Escande, A., Lapasset, J., Faure, R., Vincent, E.J., Elguero, J.: Les benzazoles (Indazole, Benzimidazole, Benzotriazole) structure moleculaire et proprietes fondamentales. Tetrahedron 30, 2903–2909 (1974)

    Article  CAS  Google Scholar 

  15. Vasiltsova, T.V., Verevkin, S.P., Bich, E., Heintz, A., Bogel-Lukasik, R., Domanska, U.: Thermodynamic properties of mixtures containing ionic liquids. Activity coefficients of ethers and alcohols in 1-methyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) imide using the transpiration method. J. Chem. Eng. Data 50(1), 142–148 (2005)

    Article  CAS  Google Scholar 

  16. Kang, C.H., Yi, J.T.: Stark effect in the phase: Dipole moment of 7 azaindole in its ground and electronically excited states. Chem. Phys. Lett. 423, 7–12 (2006)

    Article  CAS  Google Scholar 

  17. Ilich, P., Haydock, C., Prendergast, F.G.: Electronic transitions in hydrated indole: A MD INDO/study. Chem. Phys. Lett. 158, 129–134 (1989)

    Article  CAS  Google Scholar 

  18. Grimme, S., Izgorodina, E.I.: Calculation of 0–0 excitation energies of organic molecules by CIS(D) quantum chemical methods. Chem. Phys. 305, 223–230 (2004)

    Article  CAS  Google Scholar 

  19. Assongo, C.K., Kabouchi, B., Nsangou, M., Tamanga, P.: Dimer complex UV absorption spectra of some nitrogen heterocycles molecules from atom monopole–dipole interaction model. J. Mol. Struct. (Theochem.) 726, 125–133 (2005)

    Article  CAS  Google Scholar 

  20. Waite, J., Papadopoulous, M.G.: Dependence of the polarizability, α, and hyperpolarizabilities, β and γ, of a series of nitrogen heterocyclics on their molecular structures. A comparative study. J. Phys. Chem. 94, 1755–1758 (1990)

    Article  CAS  Google Scholar 

  21. Cowley, E.G., Partington, J.R.: Studies in dielectric polarization. Part XV. The dipole moments of five-membered nitrogen ring compounds: indole, skatole, carbazole, isatin, and succinimide. J. Chem. Soc. 47–50 (1936)

  22. Hansch, C., Steinmetz, W.E., Leo, A.J., Mekapati, S.B., Kurup, A.D.H.: On the role of polarizability in chemical-biological interactions. J. Chem. Inf. Comput. Sci. 43(1), 120–125 (2003)

    Article  CAS  Google Scholar 

  23. Soscún, H., Alvarado, Y., Hernández, J., Hernández, P., Atencio, R., Hinchliffe, A.: Experimental and theoretical determination of the dipole polarizability of dibenzothiophene. J. Phys. Org. Chem. 14, 709–715 (2001)

    Article  Google Scholar 

  24. Alvarado, Y.J., Cubillán, N.H., Labarca, P., Karam, A., Arrieta, F., Castellano, O., Soscún, H.: Dipole polarizability of the pyrazabole molecule in solution. J. Phys. Org. Chem. 15, 835–843 (2002)

    Article  CAS  Google Scholar 

  25. Alvarado, Y., Labarca, P., Karam, A., Arrieta, F., Castellano, O., Soscún, H.: Static and dynamic dipole polarizabilities of 2- and 3-methylthiophenes in solution: experimental and theoretical determination. J. Phys. Org. Chem. 15, 154–164 (2002)

    Article  CAS  Google Scholar 

  26. Alvarado, Y.J.H., Labarca, P., Cubillán, N., Osorio, E., Karam, A.: Solvent effect on electronic polarizability of benzonitrile. Z. Naturforsch. 58a(2), 68–74 (2003)

    Google Scholar 

  27. Alvarado, Y.J., Caldera-Luzardo, J., De La Cruz, C., Ferrer-Amado, G., Michelena, E., Silva, P.: Volumetric, electric, and magnetic properties of thioxanthen-9-one in aprotic solvents as revealed by high-precision densitometry, high-accuracy refractometry and magnetic susceptibility measurements and by DFT calculations. J. Solution Chem. 35, 29–49 (2006)

    Article  CAS  Google Scholar 

  28. Alvarado, Y.J., Caldera-Luzardo, J., Ferrer-Amado, G., Manzilla-Labarca, V., Michelena, E.: Determination of the apparent molar refraction and partial molar volume at infinite dilution of thiophene-, pyrrole- and Furan-2-carboxaldehyde phenylhydrazone derivatives in acetonitrile at 293.15 K. J. Solution Chem. 36(1), 1–11 (2007)

    Article  CAS  Google Scholar 

  29. Terasawa, S., Itsuki, H., Arakawa, S.: Contribution of hydrogen bonds to the partial molar volumes of nonionic solutes in water. J. Phys. Chem. 79(22), 2345–2351 (1975)

    Article  CAS  Google Scholar 

  30. Onsager, L.: Electric moments of molecules in liquids. J. Am. Chem. Soc. 58(8), 1486–1493 (1936)

    Article  CAS  Google Scholar 

  31. Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989)

    Article  CAS  Google Scholar 

  32. Kendall, R.A., Dunning, T.H., Jr., Harrison, R.J.: Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96(9), 6796–6806 (1992)

    Article  CAS  Google Scholar 

  33. Woon, D.E., Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98(2), 1358–1371 (1993)

    Article  CAS  Google Scholar 

  34. Bondi, A.: Van der Waals. Volumes and radii. J. Phys. Chem. 68, 441–451 (1964)

    Article  CAS  Google Scholar 

  35. Lee, B.: Partial molar volume from the hard-sphere mixture model. J. Phys. Chem. 87(1), 112–118 (1983)

    Article  CAS  Google Scholar 

  36. Graziano, G.: Partial molar volume of n-alcohols at infinite dilution in water calculated by means of scaled particle theory. J. Chem. Phys. 124(13), 134507 (2006)

    Article  Google Scholar 

  37. Snyder, C., Douglas, J.: Determination of the dielectric constant of nanoparticules.1. Dielectric measurements of buckminsterfullerene solutions. J. Phys. Chem. B 104, 11058–11065 (2000)

    Article  CAS  Google Scholar 

  38. Kell, G.S.: Isothermal compressibility of liquid water at 1 atm. J. Chem. Eng. Data 15, 119–122 (1970)

    Article  CAS  Google Scholar 

  39. Ruelle, P., Farina-Cuendet, A., Kesselring, U.W.: Changes of molar volume from solid to liquid and solution: The particular case of C60. J. Am. Chem. Soc. 118, 1777–1784 (1996)

    Article  CAS  Google Scholar 

  40. Aminabhavi, T.M., Patel, R.C., Jayadevappa, E.S., Prasad, B.R.: Excess volume and excess polarizability during mixing of binary solvents. J. Chem. Eng. Data 27, 50–53 (1982)

    Article  CAS  Google Scholar 

  41. Rudan-Tasic, D., Klofutar, C.: Apparent molar volume and expansibility of cyclohexanol in benzene and cyclohexane. Monatsch. Chem. 129, 1245–1257 (1998)

    CAS  Google Scholar 

  42. Wong, M.W., Wiberg, K.B., Frisch, M.J.: Ab initio calculation of molar volumes: Comparison with experimental and use in solvation models. J. Comp. Chem. 16(3), 385–394 (1995)

    Article  CAS  Google Scholar 

  43. Graziano, G.: Non-intrinsic contribution to the partial molar volume of cavities in water. Chem. Phys. Lett. 429(4–6), 420–424 (2006)

    Article  CAS  Google Scholar 

  44. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision D.02. Gaussian, Inc., Wallingford, CT (2004)

  45. Redlich, O.: Molal volumes of solute. IV. J. Phys. Chem. 44(5), 619–629 (1940)

    Article  CAS  Google Scholar 

  46. Klofutar, C., Paljk, S., Golc-Teger, S.: Partial molar volumes and partial molar expansibilities of cholesterol in some aprotic solvents. Thermochim. Acta 196(2), 401–413 (1992)

    Article  CAS  Google Scholar 

  47. Millero, F.J.: Molal volumes of electrolytes. Chem. Rev. 71(2), 147–176 (1971)

    Article  CAS  Google Scholar 

  48. Conway, B.E., Ayranci, E.: Structural effect in the partial molar volumes and isentropic compressibilities of organic bases and their conjugates ions. J. Chem. Thermodyn. 20, 9–27 (1988)

    Article  CAS  Google Scholar 

  49. Oswal, S., Ijardar, S.: Studies of partial molar volumes of alkylamine in non-electrolyte solvents III: Alkyl amines in butanols at 303.15 K. J. Mol. Liq. 144(3), 115–123 (2009)

    Article  CAS  Google Scholar 

  50. Fucaloro, A., Pul, Y., Cha, K., Williams, A., Conrad, K.: Partial molar volumes and refractions of aqueous solutions of fructose, glucose, mannose, and sucrose at 15.00, 20.00, and 25.00°C. J. Solution Chem. 36(1), 61–80 (2007)

    Article  CAS  Google Scholar 

  51. Edward, J.: Molecular volumes and the Stokes-Einstein equation. J. Chem. Educ. 47(4), 261–270 (1970)

    Article  CAS  Google Scholar 

  52. Marcus, Y.: The sizes of molecules–revisited. J. Phys. Org. Chem. 16(7), 398–408 (2003)

    Article  CAS  Google Scholar 

  53. Kolling, O.W.: Polarizability–hyperpolarizability influences upon solvatochromism in polychloroalkane and polychloroalkene media. J. Phys. Chem. 100(2), 519–522 (1996)

    Article  CAS  Google Scholar 

  54. Alvarado, Y.J.H., Labarca, P., Cubillán, N., Osorio, E., Karam, A.: Influence of the dielectric medium on the carbonyl infrared absorption peak of acetylferrocene. Molecules 10, 457–474 (2005)

    Article  CAS  Google Scholar 

  55. Milischuk, A., Matyushov, D.V.: On the validity of dielectric continuum models in application to solvation in molecular solvents. J. Chem. Phys. 118(4), 1859–1862 (2003)

    Article  Google Scholar 

  56. Alvarado, Y.J., Cubillán, N.: Manuscript in preparation

  57. Graziano, G.: Hydration thermodynamics of N-methylacetamide. J. Phys. Soc. Jpn. 69(11), 3720–3725 (2000)

    Article  CAS  Google Scholar 

  58. Sivolozhskaya, Y., Potkina, N., Korolev, V.: Comparative study of solvation of CCl4 in alcohol–alcohol and alcohol–alkane systems. Russ. J. Gen. Chem. 72(6), 864–869 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ysaías J. Alvarado.

Electronic Supplementary Material

10953_2010_9511_MOESM1_ESM.pdf

Residuals plots of linear(square) and quadratic (circle) fits of density ρ(g⋅cm−3) with molar concentration (mol⋅dm−3) (pdf 102kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarado, Y.J., Cubillán, N., Chacín-Molero, E. et al. Experimental and Theoretical Determination of the Limiting Partial Molar Volume of Indole in CCl4, Tetrahydrofuran and Acetonitrile at 293.15 K: A Comparative Study with Benzimidazole and Benzothiophene. J Solution Chem 39, 277–290 (2010). https://doi.org/10.1007/s10953-010-9511-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9511-3

Keywords

Navigation