Skip to main content

Advertisement

Log in

Solubility of B-Nb2O5 and the Hydrolysis of Niobium(V) in Aqueous Solution as a Function of Temperature and Ionic Strength

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

B-Nb2O5 was recrystallized from commercially available oxide, and XRD analyses indicated that it is stable in contact with solutions over the pH range 0 to 9, whereas solid polyniobates such as Na8Nb6O19⋅13H2O(s) appear to predominate at pH>9. Solubilities of the crystalline B-Nb2O5 were determined in five NaClO4 solutions (0.1≤I m /mol⋅kg−1≤1.0) over a wide pH range at (25.0±0.1) °C and at 0.1 MPa. A limited number of measurements were also made at I m =6.0 mol⋅kg−1, whereas at I m =1.0 mol⋅kg−1 the full range of pH was also covered at (10, 50 and 70) °C. The pH of these solutions was fixed using either HClO4 (pH≤4) or NaOH (pH≥10) and determined by mass balance, whereas the pH on the molality scale was measured in buffer mixtures of acetic acid + acetate (4≤pH≤6), Bis-Tris (pH≈7), Tris (pH≈8) and boric acid + borate (pH≈9). Treatment of the solubility results indicated the presence of four species, \(\mathrm{Nb(OH)}_{n}^{5-n}\) (where n=4–7), so that the molal solubility quotients were determined according to:

$$0\mathrm{.5Nb}_{2}\mathrm{O}_{5}\mathrm{(cr)+0}\mathrm{.5(2}n-5\mathrm{)H}_{2}\mathrm{O(l)}_{\leftarrow}^{\to}\mathrm{Nb(OH)}_{n}^{5-n}+(n-5)\mathrm{H}^{+}\quad (n=4\mbox{--}7)$$

and were fitted empirically as a function of ionic strength and temperature, including the appropriate Debye-Hückel term. A Specific Interaction Theory (SIT) approach was also attempted. The former approach yielded the following values of log 10 K sn (infinite dilution) at 25 °C: −(7.4±0.2) for n=4; −(9.1±0.1) for n=5; −(14.1±0.3) for n=6; and −(23.9±0.6) for n=7. Given the experimental uncertainties (2σ), it is interesting to note that the effect of ionic strength only exceeded the combined uncertainties significantly in the case of log 10 K s6 to I m =1.0 mol⋅kg−1, such that these values may be of use by defining their magnitudes in other media. Values of Δ f G o, Δ f H o, S o and \(C_{p}^{\mathrm{o}}\) (298.15 K, 0.1 MPa) for each hydrolysis product were calculated and tabulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry, 2nd edn. Wiley-Interscience, New York (1988), p. 787

    Google Scholar 

  2. Hofmann, A.W.: Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997)

    Article  CAS  Google Scholar 

  3. Reimann, C., de Caritat, P.: Chemical Elements in the Environment—Factsheets for the Geochemist and Environmental Scientist. Springer, Berlin (1998), p. 398

    Google Scholar 

  4. Pudjanto, B.A.: The chemical state of fission products in uranium-oxide fuel. In: Prosiding Seminar Nasional Sainsdan Teknik Nukir P3TkN-BATAN, Bandung, Indonesia, 14–15 June 2005, pp. 236–244

  5. Babko, A.K., Lukachina, V.V., Nabivanets, B.I.: Solubility and acid-base properties of tantalum and niobium hydroxides. Russ. J. Inorg. Chem. 8, 957–961 (1963)

    Google Scholar 

  6. Baes, C.F. Jr., Mesmer, R.E.: The Hydrolysis of Cations. Wiley-Interscience, New York (1976)

    Google Scholar 

  7. Etxebarria, N.E., Fernández, L.A., Madariaga, J.M.: On the hydrolysis of niobium(V) and tantalum(V) in 3 mol⋅dm−3 KCl at 25 °C. Part 1. Construction of a thermodynamic model for NbV. J. Chem. Soc., Dalton Trans. 3055–3059 (1994)

  8. Mesmer, R.E., Holmes, H.F.: pH definition and measurement at high temperatures and pressures. J. Solution Chem. 21, 725–744 (1992)

    Article  CAS  Google Scholar 

  9. Spinner, B.: Étude quantitative de l’hydrolyse des niobates de potassium. Rev. Chim. Min. 5, 839–868 (1968)

    CAS  Google Scholar 

  10. Goiffon, A., Granger, R., Bockel, C., Spinner, B.: Étude des équilibres dans les solutions alcalines du niobium V. Rev. Chim. Min. 10, 487–502 (1973)

    CAS  Google Scholar 

  11. Goiffon, A., Spinner, B.: Spectres Raman des solutions aqueuses du niobates de potassium. Rev. Chim. Min. 11, 262–268 (1974)

    CAS  Google Scholar 

  12. Jander, G., Ertel, D.: Über Niobsäuren und Wasserlösliche Alkaliniobate. I Lichtabsorptions- und Diffusionsmessungen an Alkaliniobatlösungen. J. Inorg. Nucl. Chem. 14, 71–76 (1960)

    Article  CAS  Google Scholar 

  13. Neumann, G.: On the hydrolysis of niobates in 3 M K(Cl) medium. Acta Chem. Scand. 18, 278–280 (1964)

    Article  CAS  Google Scholar 

  14. Jander, G., Ertel, D.: Über Niobsäuren und Wasserlösliche Alkaliniobate. II Präparitiv-analytische Untersuchungen. J. Inorg. Nucl. Chem. 14, 77–84 (1960)

    Article  CAS  Google Scholar 

  15. Jander, G., Ertel, D.: Über Niobsäuren und Wasserlösliche Alkaliniobate. III Kinduktometrische Titrationen und vergleichende Röntgengraphische Untersuchungen. Das Hydrolyseschema der Isopolyniobate. J. Inorg. Nucl. Chem. 14, 85–90 (1960)

    Article  CAS  Google Scholar 

  16. Wesolowski, D.J., Ziemniak, S.E., Anovitz, L.M., Machesky, M.L., Bénézeth, P., Palmer, D.A.: Solubility and surface adsorption characteristics of metal oxides. In: Palmer, D.A., Fernández-Prini, R., Harvey, A.H. (eds.) Aqueous Systems at Elevated Temperatures and Pressures: Physical Chemistry in Water, Steam and Hydrothermal Solutions, vol. 14, pp. 493–595. Elsevier/Academic Press, Amsterdam (2004)

    Chapter  Google Scholar 

  17. Guillaumont, R., Franck, J.C., Muxart, R.: Contribution à l’étude de l’hydrolyse du niobium. Radiochem. Radioanal. Lett. 4, 73–79 (1970)

    CAS  Google Scholar 

  18. Lindqvist, I.: The structure of the hexaniobate ion in 7Na2O⋅6Nb2O5⋅32H2O. Ark. Kemi 5, 247–250 (1953)

    CAS  Google Scholar 

  19. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS tables of chemical thermodynamic properties. J. Phys. Chem. Ref. Data 11, 2–207 (1982)

    Google Scholar 

  20. Anderegg, G., Rao, L., Puigdomenech, I., Tochiyama, O.: In: Mompean, J., Illemassène, M. (eds.) Chemical Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with Selected Organic Ligands. Elsevier, Amsterdam (2005)

    Google Scholar 

  21. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworths, London (1959)

    Google Scholar 

  22. Serafím, M.J.S., Bessler, K.E., Lemos, S.S., Sales, M.J.A., Ellena, J.: The preparation of new oxoniobium(V) complexes from hydrated niobium(V) oxide: the crystal and molecular structure of oxotris(2-pyridinolato-N-oxide)niobium(V). Trans. Met. Chem. 32, 112–116 (2007)

    Article  Google Scholar 

  23. Gudasi, K., Maravalli, P., Goudar, T.: Thermokinetic and spectral studies of niobium(V) complexes with 3-substituted-4-amino-5-mercapto-1,2,4-triazole Schiff bases. J. Serb. Chem. Soc. 70, 643–650 (2005)

    Article  Google Scholar 

  24. Vachirapatama, N., Macka, M., Paull, B., Műnker, C., Haddad, P.R.: Determination of niobium(V) and tantalum(V) as 4-(2-pyridylazo)resorcinol–citrate ternary complexes in geological materials by ion-interaction reversed-phase high-performance liquid chromatography. J. Chrom. A 850, 257–268 (1999)

    Article  CAS  Google Scholar 

  25. Grenthe, I., Puigdomenech, I. (eds.): Modeling in Aquatic Chemistry. OECD, Paris (1997)

    Google Scholar 

  26. Mesmer, R.E., Baes, J.F. Jr.: Phosphoric acid dissociation equilibria in aqueous solutions to 300 °C. J. Solution Chem. 3, 307–322 (1974)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Palmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peiffert, C., Nguyen-Trung, C., Palmer, D.A. et al. Solubility of B-Nb2O5 and the Hydrolysis of Niobium(V) in Aqueous Solution as a Function of Temperature and Ionic Strength. J Solution Chem 39, 197–218 (2010). https://doi.org/10.1007/s10953-010-9495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9495-z

Keywords

Navigation