Advertisement

Journal of Solution Chemistry

, 38:1536 | Cite as

Electrochemical Studies on cis-[CrIII(bipy)2(SCN)2]I3 (Where bipy Denotes 2,2′-Bipyridine) in Acetonitrile

  • Nikos G. Tsierkezos
  • Athanassios I. Philippopoulos
  • Uwe Ritter
Article

Abstract

The molar conductivities (Λ) of solutions of bis(2,2′-bipyridine)bis(thiocyanate)chromium(III) triiodide [CrIII(bipy)2(SCN)2]I3 (where bipy denotes 2,2′-bipyridine, C10H8N2), [ \(\mathrm{A}^{+}\mathrm{I}_{3}^{-}\) ], were measured in acetonitrile (ACN) at the temperatures 294.15, 299.15, and 305.15 K. In addition, cyclic voltammograms (CVs) of [ \(\mathrm{A}^{+}\mathrm{I}_{3}^{-}\) ] were recorded on platinum, gold, and glassy carbon working electrodes in ACN, using n-tetrabutylammonium hexafluorophosphate (NBu4PF6) as the supporting electrolyte, at scan rates (v) ranging from 0.05 to 0.12 V⋅s−1. Furthermore, electrochemical impedance spectroscopic (EIS) measurements were carried out in the frequency range 50 Hz<f<50 kHz using these three working electrodes. The measured molar conductivities (Λ) demonstrate that [ \(\mathrm{A}^{+}\mathrm{I}_{3}^{-}\) ] behaves as uni-univalent electrolyte in ACN over the investigated temperature range. The Λ values were analyzed by means of the Lee-Wheaton conductivity equation in order to estimate the limiting molar conductivities (Λ o), as well as the thermodynamic association constants (K A), at each experimental temperature for formation of [A+ \(\mathrm{I}_{3}^{-}\) ] ion-pairs. The limiting ionic conductivities ( \(\lambda_{\pm}^{\mathrm{o}}\) ), the diffusion coefficients at infinite dilution (D ±), as well as the Stokes’ radii (r St) were determined for both A+ and \(\mathrm{I}_{3}^{-}\) ions. The thermodynamic parameters for the ionic association process, i.e. the Gibbs energy ( \(\Delta G_{\mathrm{A}}^{\mathrm{o}}\) ), enthalpy ( \(\Delta H_{\mathrm{A}}^{\mathrm{o}}\) ), and entropy ( \(\Delta S_{\mathrm{A}}^{\mathrm{o}}\) ), were also determined. The mobility and diffusivity of the A+ ion increase linearly with increasing temperature because the solvent medium becomes less viscous as the temperature increases. The K A values indicate that significant ion association occurs that is not influenced by temperature changes. The ion-pair formation process is exothermic ( \(\Delta H_{\mathrm{A}}^{\mathrm{o}}<0\) ), leading to the generation of additional entropy ( \(\Delta S_{\mathrm{A}}^{\mathrm{o}}>0\) ). As a result, the Gibbs energy \(\Delta G_{\mathrm{A}}^{\mathrm{o}}\) is negative ( \(\Delta G_{\mathrm{A}}^{\mathrm{o}}<0\) ) and the formation of \([\mathrm{A}^{+}\mathrm{I}_{3}^{-}]\) becomes favorable. CV studies on \([\mathrm{A}^{+}\mathrm{I}_{3}^{-}]\) solutions indicated that the redox pair Cr3+/2+ appears to be quasi-reversible on a glassy carbon electrode but is completely irreversible on platinum and gold electrodes. EIS experiments confirm that, among these three electrodes, the glassy carbon working electrode has the smallest resistance to electron transfer.

Bipyridine Conductivity Cyclic voltammetry Chromium(III) Electrochemical impedance spectroscopy Thermodynamic properties Thiocyanate 

References

  1. 1.
    Ue, M.: Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone. J. Electrochem. Soc. 141, 3336–3342 (1994) CrossRefGoogle Scholar
  2. 2.
    Ue, M., Mori, S.: Mobility and ionic association of lithium salts in a propylene carbonate-ethyl methyl carbonate mixed solvent. J. Electrochem. Soc. 142, 2577–2581 (1995) CrossRefGoogle Scholar
  3. 3.
    Shedlovsky, T.: An equation for electrolytic conductance. J. Am. Chem. Soc. 54, 1405–1411 (1932) CrossRefGoogle Scholar
  4. 4.
    Robinson, R.A., Stokes, R.H.: The variation of equivalent conductance with concentration and temperature. J. Am. Chem. Soc. 76, 1991–1994 (1954) CrossRefGoogle Scholar
  5. 5.
    Fuoss, R.M.: Conductance of dilute solutions of 1-1 electrolytes. J. Am. Chem. Soc. 81, 2659–2662 (1959) CrossRefGoogle Scholar
  6. 6.
    Berns, D.S., Fuoss, R.M.: The dependence of ionic mobility on the dielectric constant of the solvent. J. Am. Chem. Soc. 83, 1321–1323 (1961) CrossRefGoogle Scholar
  7. 7.
    Fuoss, R.M.: Conductance-concentration function for associated symmetrical electrolytes. J. Phys. Chem. 79, 1983 (1975) CrossRefGoogle Scholar
  8. 8.
    Lee, W.H., Wheaton, R.J.: Conductance of symmetrical, unsymmetrical and mixed electrolytes. Relaxation terms. J. Chem. Soc., Faraday Trans. 74, 743–766 (1978) CrossRefGoogle Scholar
  9. 9.
    Lee, W.H., Wheaton, R.J.: Conductance of symmetrical, unsymmetrical and mixed electrolytes. Hydrodynamic terms and complete conductance equation. J. Chem. Soc., Faraday Trans. 74, 1456–1482 (1978) CrossRefGoogle Scholar
  10. 10.
    Lee, W.H., Wheaton, R.J.: Conductance of symmetrical, unsymmetrical and mixed electrolytes. Examination of new model and analysis of data for symmetrical electrolytes. J. Chem. Soc., Faraday Trans. 75, 1128–1145 (1979) CrossRefGoogle Scholar
  11. 11.
    Tsierkezos, N.G., Philippopoulos, A.I.: Conductometric and voltammetric studies on the bis(triphenyl phosphine) ruthenium(II) complex, cis-[RuCl2(L)(PPh3)2], where L: 2-(2′-pyridyl)quinoxaline. Inorg. Chim. Acta 362, 3079–3087 (2009) CrossRefGoogle Scholar
  12. 12.
    Aminabhavi, T.M., Gopalakrishna, B.: Density, viscosity, refractive index, and speed of sound in aqueous mixtures of N,N-dimethylformamide, dimethyl sulfoxide, N,N-dimethylacetamide, acetonitrile, ethylene glycol, diethylene glycol, 1,4-dioxane, tetrahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K. J. Chem. Eng. Data 40, 856–861 (1995) CrossRefGoogle Scholar
  13. 13.
    Cunningham, G.P., Vidulich, G.A., Kay, R.L.: Several properties of acetonitrile-water, acetonitrile-methanol, and ethylene carbonate-water systems. J. Chem. Eng. Data 12, 336–337 (1967) CrossRefGoogle Scholar
  14. 14.
    Cotton, F.A., Robinson, W.R., Walton, R.A., Whyman, R.: Some reactions of the octahalodirhenate(III) ions. Reactions with sodium thiocyanate and the preparation of isothiocyanate complexes of rhenium(III) and rhenium(IV). Inorg. Chem. 6, 929–935 (1967) CrossRefGoogle Scholar
  15. 15.
    Rondinini, S., Longhi, P., Mussini, P.R., Mussini, T.: Autoprotolysis constants in nonaqueous solvents and aqueous organic solvent mixtures. Pure Appl. Chem. 59, 1693–1702 (1987) CrossRefGoogle Scholar
  16. 16.
    Eliassaf, J., Fuoss, R.M., Lind, J.E.: Conductance of quaternary ammonium hexafluorophosphates in acetonitrile. J. Phys. Chem. 67, 1941–1942 (1963) Google Scholar
  17. 17.
    Coetzee, J.F., Cunningham, G.P.: Evaluation of single ion conductivities in acetonitrile, nitromethane, and nitrobenzene using tetraisoamylammonium tetraisoamylboride as reference electrolyte. J. Am. Chem. Soc. 87, 2529–2534 (1965) CrossRefGoogle Scholar
  18. 18.
    Gill, D.S., Rodehüser, L., Delpuech, J.J.: Solvation of copper(I) perchlorate in mixed solvent systems containing acetonitrile. A 63Cu, 65Cu and 31P nuclear magnetic resonance study. J. Chem. Soc., Faraday Trans. 86, 2847–2852 (1990) CrossRefGoogle Scholar
  19. 19.
    Gill, D.S., Pathania, V., Vermani, B.K., Sharma, R.P.: Behaviour of some copper(I) and cobalt(III) complexes in acetonitrile and n-butyronitrile at 298.15 K. Z. Phys. Chem. 217, 739–750 (2003) Google Scholar
  20. 20.
    Ryu, C.K., Endicott, J.F.: Synthesis, spectroscopy, and photophysical behavior of mixed-ligand mono- and bis(polypyridyl)chromium(III) complexes. Examples of efficient, thermally activated excited-state relaxation without back intersystem crossing. Inorg. Chem. 27, 2203–2214 (1988) CrossRefGoogle Scholar
  21. 21.
    Pérez-Dubois, P., Pilar, S., Masaguer, J.R., Arquero, A.: Complexes of 2-acetylpyridinesemicarbazone and 2-acetylpyridinethiosemicarbazone with cobalt(II), chromium(III) and copper(II). Transit. Met. Chem. 12, 200–202 (1987) CrossRefGoogle Scholar
  22. 22.
    Mizuochi, H., Shirakata, S., Kyuno, E., Tsuchiya, R.: Chromium(III) complexes with iminodiacetic acid or l-aspartic acid. Bull. Chem. Soc. Jpn. 43, 397–400 (1970) CrossRefGoogle Scholar
  23. 23.
    Samnani, P.B., Bhattacharya, P.K., Ganeshpure, P.A., Koshy, V.J., Satish, S.: Mixed ligand complexes of chromium(III) and iron(III): synthesis and evaluation as catalysts for oxidation of olefins. J. Mol. Catal. A Chem. 110, 89–94 (1996) CrossRefGoogle Scholar
  24. 24.
    Pura, S.: The effect of temperature on the equivalent conductivities and ion-association constants of some tris-(ethylenediamine)chromium(III) complexes in N,N-dimethylformamide and N,N-dimethylacetamide. J. Solution Chem. 37, 351–364 (2008) CrossRefGoogle Scholar
  25. 25.
    Takahashi, T.: Association constants of hexaamminechromium(III), tris(ethylenediamine) chromium(III) ions with some univalent anions in aqueous solutions. J. Chem. Soc. Jpn. (Nippon Kagaku Kaishi) 21–28 (1975) Google Scholar
  26. 26.
    Casabó, J., Solans, A., Diaz, C., Ribas, J., Seguí, A., Corbella, M.: Mixed fluoroamine complexes of chromium(III). Transit. Met. Chem. 10, 128–130 (1985) CrossRefGoogle Scholar
  27. 27.
    Mandlik, P.R., Aswar, A.S.: Schiff base metal complexes of chromium(III), manganese(III), iron(III), oxovanadium(IV), zirconium(IV) and dioxouranium(VI). Pol. J. Chem. 77, 129–135 (2003) Google Scholar
  28. 28.
    Hartl, F., Mahabiersing, T., Le Floch, P., Mathey, F., Ricard, L., Rosa, P., Záliš, S.: Electronic properties of 4,4,5,5-tetramethyl-2,2-biphosphinine (tmbp) in the redox series fac-[Mn(Br)(CO)3(tmbp)], [Mn(CO)3(tmbp)]2, and [Mn(CO)3(tmbp)]: crystallographic, spectroelectrochemical, and DFT computational study. Inorg. Chem. 42, 4442–4455 (2003) CrossRefGoogle Scholar
  29. 29.
    Walter, B.J., Elliott, C.M.: Interaction of I and \(\mathrm{I}_{3}^{-}\) with a redox-stable Cr(III)-based structural surrogate for photo-oxidized “N3 Dye”. Inorg. Chem. 40, 5924–5927 (2001) CrossRefGoogle Scholar
  30. 30.
    Lind, J.E., Zwolenik, J.J., Fuoss, R.M.: Calibration of conductance cells at 25° with aqueous solutions of potassium chloride. J. Am. Chem. Soc. 81, 1557–1559 (1959) CrossRefGoogle Scholar
  31. 31.
    Tanaka, T., Komatsu, K.: Synthesis of the singly bonded fullerene dimer C120H2 and the difullerenylacetylene C122H2, and generation of the all-carbon dianion \(\mathrm{C}_{122}^{2-}\) . J. Chem. Soc. Perkin Trans. 1, 1671–1676 (1999) CrossRefGoogle Scholar
  32. 32.
    Das, B., Saha, N.: Electrical conductances of some symmetrical tetraalkylammonium salts in methanol, acetonitrile, and methanol/acetonitrile mixtures at 298.15 K. J. Chem. Eng. Data 45, 2–5 (2000) CrossRefGoogle Scholar
  33. 33.
    Huttemann, T.J., Foxman, B.M., Sperati, C.R., Verkade, J.G.: Transition metal complexes of a constrained phosphite ester. Compounds of cobalt(I), cobalt(III), nickel(II), and nickel(0). Inorg. Chem. 4, 950–953 (1965) CrossRefGoogle Scholar
  34. 34.
    Duckworth, M.W., Fowles, G.W.A., Hoodless, R.A.: Reaction of alkyl cyanides with chlorides and bromides of tervalent titanium and vanadium, and with vanadium(IV) chloride. J. Chem. Soc. 5665–5673 (1963) Google Scholar
  35. 35.
    Quagliano, J.V., Summers, J.T., Kida, S., Vallarino, L.M.: The donor properties of positively charged ligands. Metal complexes of the β-aminoethyltrimethylammonium and γ-aminopropyltrimethylammonium cations. Inorg. Chem. 3, 1557–1561 (1964) CrossRefGoogle Scholar
  36. 36.
    Walton, R.A.: The reactions of metal halides with alkyl cyanides. Q. Rev. Chem. Soc. 19, 126–143 (1965) CrossRefGoogle Scholar
  37. 37.
    Geary, W.J.: The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord. Chem. Rev. 7, 81–122 (1971) CrossRefGoogle Scholar
  38. 38.
    Sechkarev, A.V., Fadeev, Y.A., Reva, I.D.: Intermolecular interactions in acetonitrile in a liquid and in a low-temperature argon matrix. J. Appl. Spectrosc. 66, 708–714 (1999) CrossRefGoogle Scholar
  39. 39.
    Pethybridge, A.D., Taba, S.S.: Precise conductimetric studies on aqueous solutions of 2:2 electrolytes. Analysis of data for magnesium sulfate in terms of new equations from Fuoss and from Lee and Wheaton. J. Chem. Soc., Faraday Trans. 76, 368–376 (1980) CrossRefGoogle Scholar
  40. 40.
    Justice, J.C.: An interpretation for the distance parameter of the Fuoss-Onsager conductance equation in the case of ionic association. Electrochim. Acta 16, 701–712 (1971) CrossRefGoogle Scholar
  41. 41.
    Gill, S., Sekhri, M.B.: New approach to the evaluation of single-ion conductances in pure and mixed nonaqueous solvents. J. Chem. Soc., Faraday Trans. 78, 119–125 (1982) CrossRefGoogle Scholar
  42. 42.
    Barczynska, J., Bald, A., Szejgis, A.: Viscometric and conductometric studies for CaCl2 solutions in water-propan-1-ol mixtures at 25°. J. Chem. Soc., Faraday Trans. 86, 2887–2890 (1990) Google Scholar
  43. 43.
    Prabhu, P.V.S.S., Kumar, T.P., Namboodiri, P.N.N., Gangadharan, R.: Conductivity and viscosity studies of ethylene carbonate based solutions containing lithium perchlorate. J. Appl. Electrochem. 23, 151–156 (1993) Google Scholar
  44. 44.
    Harkness, A.C., Daggett, H.M.: The electrical conductivities of some tetra-n-alkylammonium salts in acetonitrile. Can. J. Chem. 43, 1215–1221 (1965) CrossRefGoogle Scholar
  45. 45.
    Lide, D.R.: CRC Handbook of Chemistry and Physics, 79th edn. CRC Press, Boca Raton (1998–1999) Google Scholar
  46. 46.
    Robinson, R.A., Stokes, R.: Electrolyte Solutions, 2nd edn. Butterworth, Stoneham (1959) Google Scholar
  47. 47.
    Gill, D.S.: An empirical modification of Stokes law and evaluation of solvated radii of ions in non-aqueous solvents. Electrochim. Acta 22, 491–492 (1977) CrossRefGoogle Scholar
  48. 48.
    Gill, D.S.: Evaluation of solvated radii of ions in non-aqueous solvents. Electrochim. Acta 24, 701–703 (1979) CrossRefGoogle Scholar
  49. 49.
    Victor, P.J., Muhuri, P.K., Das, B., Hazra, D.K.: Thermodynamics of ion association and solvation in 2-methoxyethanol: behavior of tetraphenylarsonium, picrate, and tetraphenylborate ions from conductivity and ultrasonic data. J. Phys. Chem. B 103, 11227–11232 (1999) CrossRefGoogle Scholar
  50. 50.
    Tsurko, E.N., Neueder, R., Barthel, J.: Electrolyte conductivity of NaSCN in propan-1-ol and propan-2-ol solutions at temperatures from 228 K to 298 K. J. Chem. Eng. Data 45, 678–681 (2000) CrossRefGoogle Scholar
  51. 51.
    Victor, P.J., Muhuri, P.K., Das, B., Hazra, D.K.: Thermodynamics of ionic association of tetraphenylphosphonium, tetraphenylarsonium, and some common cations in 2-methoxyethanol using conductometry and FT-Raman spectroscopy. J. Phys. Chem. B 104, 5350–5356 (2000) CrossRefGoogle Scholar
  52. 52.
    Bond, A.M., Oldham, K.B., Snook, G.A.: Use of the ferrocene oxidation process to provide both reference electrode potential calibration and a simple measurement (via semiintegration) of the uncompensated resistance in cyclic voltammetric studies in high-resistance organic solvents. Anal. Chem. 72, 3492–3496 (2000) CrossRefGoogle Scholar
  53. 53.
    Nicholson, R.S.: Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 37, 1351–1355 (1965) CrossRefGoogle Scholar
  54. 54.
    Connelly, N.G., Geiger, W.E.: Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996) CrossRefGoogle Scholar
  55. 55.
    Tanaka, N., Ito, T., Tamamushi, R.: The reduction of isothiocyanato-ammine complexes of chromium(III) at the dropping mercury electrode. Bull. Chem. Soc. Jpn. 37, 1430–1434 (1964) CrossRefGoogle Scholar
  56. 56.
    Sato, Y., Tanaka, N.: Polarographic behavior of tris(2,2′-bipyridine)chromium(III) and tris(ethylenediamine)chromium(III) in acetonitrile solutions. Bull. Chem. Soc. Jpn. 42, 1021–1024 (1969) CrossRefGoogle Scholar
  57. 57.
    Soignet, D.M., Hargis, L.G.: Electrochemical investigation of the dichlorobis(2,2′-bipyridine)chromium(III) complex. Inorg. Chem. 12, 877–881 (1973) CrossRefGoogle Scholar
  58. 58.
    Tanaka, N., Itabashi, E., Kyono, E.: Ionic charge effect on the reduction potential of inert-type metal complex. Bull. Chem. Soc. Jpn. 36, 917–919 (1963) CrossRefGoogle Scholar
  59. 59.
    Walsh, J.H., Earley, J.E.: Reduction potentials of some chromium(III) complexes. Inorg. Chem. 3, 343–347 (1964) CrossRefGoogle Scholar
  60. 60.
    Orazem, M.E., Tribollet, B.: Electrochemical Impedance Spectroscopy. Wiley, New York (2008) Google Scholar
  61. 61.
    Cheng, S., Zhang, J., Zhao, M., Cao, C.: Electrochemical impedance spectroscopy study of Ni/MH batteries. J. Alloys Compd. 293–295, 814–820 (1999) CrossRefGoogle Scholar
  62. 62.
    Mohran, H.S.: Impedance behavior of some reactive systems in aprotic solvents. Am. J. Appl. Sci. 2, 1629–1633 (2005) CrossRefGoogle Scholar
  63. 63.
    Jingjing, Y., Jiangwen, L., Faqiong, Z., Baizhao Zeng, Z.: Characterization of carbon nanotubes-gold nanoparticles composite film modified electrode and voltammetric determination of mefenamic acid. J. Braz. Chem. Soc. 19, 849–855 (2008) Google Scholar
  64. 64.
    van der Wal, P.D., Sudhölter, E.J.R., Boukamp, B.A., Bouwmeester, H.J.M., Reinhoudt, D.N.: Impedance spectroscopy and surface study of potassium-selective silicone rubber membranes. J. Electroanal. Chem. 317, 153–168 (1991) CrossRefGoogle Scholar
  65. 65.
    Loś, P., Zabinska, G., Kisza, A., Christie, L., Mount, A., Bruce, P.G.: Electrochemical studies of heterogeneous reduction of tetracyanoquinodimethane in poly(ethylene oxide) electrolytes using ac impedance and cyclic voltammetry at an ultramicroelectrode. Phys. Chem. Chem. Phys. 2, 5449–5454 (2000) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nikos G. Tsierkezos
    • 1
  • Athanassios I. Philippopoulos
    • 2
  • Uwe Ritter
    • 1
  1. 1.Institut für Physik, Fachgebiet Chemie, Fakultät für Mathematik und NaturwissenschaftenTechnische Universität IlmenauIlmenauGermany
  2. 2.Laboratory of Inorganic Chemistry, Faculty of Chemistry, School of ScienceNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations