Journal of Solution Chemistry

, 38:1315 | Cite as

The Partial Molar Heat Capacities and Expansions of Inosine, 2′-Deoxyinosine and 2′-Deoxyguanosine in Aqueous Solution at 298.15 K

  • Gavin R. Hedwig


Solution densities over the temperature range 288.15 to 313.15 K have been measured for aqueous solutions of the nucleosides inosine, 2′-deoxyinosine, and 2′-deoxyguanosine, from which the partial molar volumes of the solutes at infinite dilution, V 2 o , were obtained. The partial molar expansions for the nucleosides at infinite dilution and 298.15 K, E 2 o {E 2 o =( V 2 o / T) p }, were derived from the V 2 o results. The V 2 o values at 298.15 K for the two sugars D-ribose and 2-deoxyribose also have been determined. The partial molar heat capacities at infinite dilution for all the solutes, C p,2 o , have been determined at 298.15 K. These V 2 o ,E 2 o , and C p,2 o results are critically compared with all of the results available from the literature, and the use of group additivity to evaluate these solution thermodynamic properties for the sparingly soluble nucleoside guanosine is explored.


Partial molar volume Partial molar heat capacity Partial molar expansion Nucleosides Aqueous solution Group additivity 


  1. 1.
    Westhof, E.: Water: An integral part of nucleic acid structure. Annu. Rev. Biophys. Biophys. Chem. 17, 125–144 (1988) CrossRefGoogle Scholar
  2. 2.
    Berman, H.M.: Hydration of DNA: take 2. Curr. Opin. Struct. Biol. 4, 345–350 (1994) CrossRefGoogle Scholar
  3. 3.
    Auffinger, P., Hashem, Y.: Nucleic acid solvation: from outside to insight. Curr. Opin. Struct. Biol. 17, 325–333 (2007) CrossRefGoogle Scholar
  4. 4.
    Qu, X., Chaires, J.B.: Hydration changes for DNA intercalation reactions. J. Am. Chem. Soc. 123, 1–7 (2001) CrossRefGoogle Scholar
  5. 5.
    Chalikian, T.V., Breslauer, K.J.: Volumetric properties of nucleic acids. Biopolymers 48, 264–280 (1998) CrossRefGoogle Scholar
  6. 6.
    Chalikian, T.V., Breslauer, K.J.: Thermodynamic analysis of biomolecules: a volumetric approach. Curr. Opin. Struct. Biol. 8, 657–664 (1998) CrossRefGoogle Scholar
  7. 7.
    Lee, A., Chalikian, T.V.: Volumetric characterization of the hydration properties of heterocyclic bases and nucleosides. Biophys. Chem. 92, 209–227 (2001) CrossRefGoogle Scholar
  8. 8.
    Patel, S.G., Kishore, N.: Thermodynamics of nucleic acid bases and nucleosides in water from 25 to 55 °C. J. Solution Chem. 24, 25–38 (1995) CrossRefGoogle Scholar
  9. 9.
    Dyke, B.P., Hedwig, G.R.: The partial molar volumes at T=(288.15 to 313.15) K, and the partial molar heat capacities and expansions at T=298.15 K of cytidine, uridine and adenosine in aqueous solution. J. Chem. Thermodyn. 40, 957–965 (2008) CrossRefGoogle Scholar
  10. 10.
    Buckin, V.A., Kankiya, B.I., Kazaryan, R.L.: Hydration of nucleosides in dilute aqueous solutions. Ultrasonic velocity and density measurements. Biophys. Chem. 34, 211–223 (1989) CrossRefGoogle Scholar
  11. 11.
    Kishore, N., Bhat, R., Ahluwalia, J.C.: Thermodynamics of some nucleic acid bases and nucleosides in water, and their transfer to aqueous glucose and sucrose solutions at 298.15 K. Biophys. Chem. 33, 227–236 (1989) CrossRefGoogle Scholar
  12. 12.
    Høiland, H., Skauge, A., Stokkeland, I.: Changes in partial molar volumes and isentropic partial molar compressibilities of stacking of some nucleobases and nucleosides in water at 298.15 K. J. Phys. Chem. 88, 6350–6353 (1984) CrossRefGoogle Scholar
  13. 13.
    Hedwig, G.R., Høgseth, E., Høiland, H.: Volumetric properties of the glycyl group of proteins in aqueous solution at high pressures. Phys. Chem. Chem. Phys. 10, 884–897 (2008) CrossRefGoogle Scholar
  14. 14.
    Tewari, Y.B., Klein, R., Vaudin, M.D., Goldberg, R.N.: Saturation molalities and standard molar enthalpies of solution of adenosine(cr), guanosine⋅2H2O(cr), inosine(cr), and xanthosine⋅2H2O(cr) in H2O(l). J. Chem. Thermodyn. 35, 1681–1702 (2003) CrossRefGoogle Scholar
  15. 15.
    Cabani, S., Gianni, P., Mollica, V., Lepori, L.: Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution. J. Solution Chem. 10, 563–595 (1981) CrossRefGoogle Scholar
  16. 16.
    Guthrie, J.P.: Additivity schemes permitting the estimation of partial molar heat capacities of organic compounds in aqueous solution. Can. J. Chem. 55, 3700–3706 (1977) CrossRefGoogle Scholar
  17. 17.
    Hedwig, G.R., Hinz, H.-J.: Group additivity schemes for the calculation of the partial molar heat capacities and volumes of unfolded proteins in aqueous solution. Biophys. Chem. 100, 239–260 (2003) CrossRefGoogle Scholar
  18. 18.
    Tewari, Y.B., Gery, P.D., Vaudin, M.D., Mighell, A.D., Klein, R., Goldberg, R.N.: Saturation molalities and standard molar enthalpies of solution of 2′-deoxyadenosine⋅H2O(cr), 2′-deoxycytidine⋅H2O(cr), 2′-deoxyguanosine⋅H2O(cr), 2′-deoxyinosine(cr), and 2′-deoxyuridine(cr) in H2O(l). J. Chem. Thermodyn. 37, 233–241 (2005) CrossRefGoogle Scholar
  19. 19.
    Reading, J.F., Hedwig, G.R.: Thermodynamic properties of peptide solutions. Part 6. The amino acid side-chain contributions to the partial molar volumes and heat capacities of some tripeptides in aqueous solution. J. Chem. Soc., Faraday Trans. 86, 3117–3123 (1990) CrossRefGoogle Scholar
  20. 20.
    Hedwig, G.R.: Thermodynamic properties of peptide solutions 3. Partial molar volumes and partial molar heat capacities of some tripeptides in aqueous solution. J. Solution Chem. 17, 383–397 (1988) CrossRefGoogle Scholar
  21. 21.
    Picker, P., Leduc, P.-A., Philip, P.R., Desnoyers, J.E.: Heat capacity of solutions by flow microcalorimetry. J. Chem. Thermodyn. 3, 631–642 (1971) CrossRefGoogle Scholar
  22. 22.
    Kell, G.S.: Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 66–69 (1967) CrossRefGoogle Scholar
  23. 23.
    Banipal, P.K., Banipal, T.S., Lark, B.S., Ahluwalia, J.C.: Partial molar heat capacities and volumes of some mono-, di- and tri-saccharides in water at 298.15, 308.15 and 318.15 K. J. Chem. Soc., Faraday Trans. 93, 81–87 (1997) CrossRefGoogle Scholar
  24. 24.
    Galema, S.A., Høiland, H.: Stereochemical aspects of hydration of carbohydrates in aqueous solutions. 3. Density and ultrasound measurements. J. Phys. Chem. 95, 5321–5326 (1991) CrossRefGoogle Scholar
  25. 25.
    Høiland, H., Holvik, H.: Partial molar volumes and compressibilities of carbohydrates in water. J. Solution Chem. 7, 587–596 (1978) CrossRefGoogle Scholar
  26. 26.
    Uedaira, H., Uedaira, H.: Sugar-water interaction from diffusion measurements. J. Solution Chem. 14, 27–34 (1985) CrossRefGoogle Scholar
  27. 27.
    Lo Surdo, A., Shin, C., Millero, F.J.: The apparent molal volume and adiabatic compressibility of some organic solutes in water at 25 °C. J. Chem. Eng. Data 23, 197–201 (1978) CrossRefGoogle Scholar
  28. 28.
    Chalikian, T.V.: Ultrasonic and densimetric characterizations of the hydration properties of polar groups in monosaccharides. J. Phys. Chem. B 102, 6921–6926 (1998) CrossRefGoogle Scholar
  29. 29.
    Paljk, S., Klofutar, C., Kac, M.: Partial molar volumes and expansibilities of some D-pentoses and D-hexoses in aqueous solution. J. Chem. Eng. Data 35, 41–43 (1990) CrossRefGoogle Scholar
  30. 30.
    Franks, F., Ravenhill, J.R., Reid, D.S.: Thermodynamic studies of dilute aqueous solutions of cyclic ethers and simple carbohydrates. J. Solution Chem. 1, 3–16 (1972) CrossRefGoogle Scholar
  31. 31.
    Morel, J.P., Lhermet, C., Morel-Desrosiers, N.: Interactions between cations and sugars. II. Enthalpies, heat capacities, and volumes of aqueous solutions of Ca2+–D-ribose and Ca2+–D-arabinose at 25 °C. Can. J. Chem. 64, 996–1001 (1986) CrossRefGoogle Scholar
  32. 32.
    Jasra, R.V., Ahluwalia, J.C.: Enthalpies of solution, partial molar heat capacities and apparent molal volumes of sugars and polyols in water. J. Solution Chem. 11, 325–338 (1982) Google Scholar
  33. 33.
    Galema, S.A., Engberts, J.B.F.N., Høiland, H., Førland, G.: Informative thermodynamic properties of the effect of stereochemistry on carbohydrate hydration. J. Phys. Chem. 97, 6885–6889 (1993) CrossRefGoogle Scholar
  34. 34.
    Shahidi, F., Farrell, P.G., Edward, J.T.: Partial molar volumes of organic compounds in water. III. Carbohydrates. J. Solution Chem. 5, 807–816 (1976) CrossRefGoogle Scholar
  35. 35.
    Stern, J.H., Oliver, D.R.: Thermodynamics of nucleoside-solvent interactions: inosine and adenosine in water and in 1 m methanol between 25 and 35 °C. J. Chem. Eng. Data 25, 221–223 (1980) CrossRefGoogle Scholar
  36. 36.
    Kawaizumi, F., Kushida, S., Miyahara, Y.: Determination of the specific heat capacities of aqueous solutions of pentose. Bull. Chem. Soc. Jpn. 54, 2282–2285 (1981) CrossRefGoogle Scholar
  37. 37.
    Stimson, H.F.: Heat units and temperature scales for calorimetry. Am. J. Phys. 23, 614–622 (1955) CrossRefGoogle Scholar
  38. 38.
    Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York (1969) Google Scholar
  39. 39.
    Lehninger, A.L.: Biochemistry, 2nd edn. Worth Publishers, New York (1975) Google Scholar
  40. 40.
    Häckel, M., Hinz, H.-J., Hedwig, G.R.: Partial molar volumes of proteins: amino acid side-chain contributions derived from the partial molar volumes of some tripeptides over the temperature range 10–90 °C. Biophys. Chem. 82, 35–50 (1999) CrossRefGoogle Scholar
  41. 41.
    Buckin, V.A.: Hydration of nucleic bases in dilute aqueous solutions. Apparent molar adiabatic and isothermal compressibilities, apparent molar volumes and their temperature slopes at 25 °C. Biophys. Chem. 29, 283–292 (1988) CrossRefGoogle Scholar
  42. 42.
    McMillan, W.G., Mayer, J.E.: The statistical thermodynamics of multicomponent systems. J. Chem. Phys. 13, 276–305 (1945) CrossRefGoogle Scholar
  43. 43.
    Desnoyers, J.E., Perron, G., Avédikian, L., Morel, J.-P.: Enthalpies of the urea–tert-butanol–water system at 25 °C. J. Solution Chem. 5, 631–644 (1976) CrossRefGoogle Scholar
  44. 44.
    Desnoyers, J.E.: Structural effects in aqueous solutions: a thermodynamic approach. Pure Appl. Chem. 54, 1469–1478 (1982) CrossRefGoogle Scholar
  45. 45.
    Martin, R.B.: Comparisons of indefinite self-association models. Chem. Rev. 96, 3043–3064 (1996) CrossRefGoogle Scholar
  46. 46.
    Solie, T.N., Schellman, J.A.: The interactions of nucleosides in aqueous solution. J. Mol. Biol. 33, 61–77 (1968) CrossRefGoogle Scholar
  47. 47.
    Broom, A.D., Schweizer, M.P., Ts’o, P.O.P.: Interaction and association of bases and nucleosides in aqueous solutions. V. Studies of the association of purine nucleosides by vapor pressure osmometry and by proton magnetic resonance. J. Am. Chem. Soc. 89, 3612–3622 (1967) CrossRefGoogle Scholar
  48. 48.
    De Visser, C., Perron, G., Desnoyers, J.E.: The heat capacities, volumes, and expansibilities of tert-butyl alcohol water mixtures from 6 to 65 °C. Can. J. Chem. 55, 856–862 (1977) CrossRefGoogle Scholar
  49. 49.
    Jolicoeur, C., Boileau, J.: Chemical models of the hydrophobic interaction. Apparent molal volumes and heat capacities of three symmetrical bolaform electrolytes and their homologous monomers in aqueous solution at 25 °C. J. Solution Chem. 3, 889–903 (1974) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Fundamental Sciences—ChemistryMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations