Journal of Solution Chemistry

, Volume 38, Issue 9, pp 1203–1215 | Cite as

Establishment of a Hydrogen Scale in 80 Mass % Propylene Carbonate + p-Xylene Medium



Details of the standardization of the reference electrode Hg/HgCl2(s) versus the SHE by a potentiometric method using two acids (viz., perchloric and 2,5-dichlorobenzene-sulfonic acids) in 80 mass % propylene carbonate (PC) + p-xylene (PX), are presented. Using this reference electrode, the standard electrode potential of the quinhydrone electrode was determined in this medium. The reference electrode potential and the standard electrode potential of the quinhydrone electrode were found to be (0.277±0.003) and (0.760±0.003) V versus SHE in 80 mass % PC + PX at 25 °C, respectively. The voltammetric behavior of the quinhydrone system in this medium was investigated at a micro platinum electrode against a non-aqueous double-junction Ag/AgCl reference electrode. The standard electrode potential of the quinhydrone system was also calculated using voltammetric and chronocoulometric data that is comparable with the value obtained by potentiometry.


Propylene carbonate p-Xylene Quinhydrone electrode Potentiometry Voltammetry Chronocoulometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Konti, A., Moumouzias, G., Ritzoulis, G.: Densities, relative permittivities and refractive indices for the binary liquid system propylene carbonate +p-xylene at (15, 20, 25, 30 and 35) °C. J. Chem. Eng. Data 42, 614–618 (1997) CrossRefGoogle Scholar
  2. 2.
    Mukherjee, L.M.: Non-aqueous solvent chemistry—some recent studies. Crit. Rev. Anal. Chem. 4, 325–357 (1975) CrossRefGoogle Scholar
  3. 3.
    Venkatashetty, H.V.: Lithium Battery Technology. Electrochem. Soc., Pennington (1984). Chap. 1 Google Scholar
  4. 4.
    Lee, W.H.: Cyclic carbonates. In: Lagowski, J.J. (ed.) The Chemistry of Non-Aqueous Solvents, vol. 4. Academic Press, New York (1976). Chap. 6 Google Scholar
  5. 5.
    Moumouzias, G., Ritzoulis, G.: Conductometric study of Bu4NClO4 in propylene carbonate–acetonitrile and propylene carbonate–toluene mixtures at 25 °C. J. Solution Chem. 25, 1271–1280 (1996) CrossRefGoogle Scholar
  6. 6.
    Moumouzias, G., Ritzoulis, G.: Conductometric study of LiClO4 and Bu4NBPh4 in propylene carbonate–toluene mixtures. Ber. Bunsen-Ges. Phys. Chem. 102, 786–791 (1998) Google Scholar
  7. 7.
    Parvatalu, D., Srivastava, A.K.: Ionic conductivity in binary solvent mixtures. 6. Behavior of certain 1:1 electrolytes in 80 mass % propylene carbonate + p-xylene at 25 °C. J. Chem. Eng. Data 48, 608–611 (2003) CrossRefGoogle Scholar
  8. 8.
    Parvatalu, D., Srivastava, A.K.: Ionic conductivity in binary solvent mixtures. 7. Behavior of certain univalent acids and alkaline earth metal perchlorates in 80 mass % propylene carbonate + p-xylene at 25 °C. J. Chem. Eng. Data 53, 933–938 (2008) CrossRefGoogle Scholar
  9. 9.
    Srivastava, A.K., Mukherjee, L.M.: Some potentiometric studies in propylene carbonate: Application of hydrogen and quinhydrone electrodes and evaluation of proton medium effect from ferrocene assumption. J. Electroanal. Chem. 160, 209–216 (1984) Google Scholar
  10. 10.
    Crowell, J.H., Raiford, L.C.: Some derivatives of p-dichlorobenzene. J. Am. Chem. Soc. 42, 145–152 (1920) CrossRefGoogle Scholar
  11. 11.
    Srivastava, A.K., Samant, R.A.: Some conductance and potentiometric studies in 20 mass % propylene carbonate + ethylene carbonate application of hydrogen and quinhydrone electrodes. J. Electroanal. Chem. 380, 29–33 (1995) CrossRefGoogle Scholar
  12. 12.
    Bruckenstein, S., Kolthoff, I.M.: Acid-base equilibria in glacial acetic acid. III. Acidity scale. Potentiometric determination of dissociation constants of acids, bases and salts. J. Am. Chem. Soc. 78, 2974–2979 (1956) CrossRefGoogle Scholar
  13. 13.
    Bruckenstein, S., Mukherjee, L.M.: Equilibria in ethylenediamine. II. Hydrogen electrode studies of some acids and sodium salts. J. Phys. Chem. 66, 2228–2234 (1962) CrossRefGoogle Scholar
  14. 14.
    Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Principles and Applications. Wiley, New York (2004), pp. 231, 290 Google Scholar
  15. 15.
    Bott, W.A., Heineman, W.R.: Chronocoulometry. Curr. Sep. 20, 121–126 (2004) Google Scholar
  16. 16.
    Eggins, B.R.: Interpretation of electrochemical reduction and oxidation waves of quinone–hydroquinone system in acetonitrile. Chem. Commun. 1267–1268 (1968) Google Scholar
  17. 17.
    Philip, R.H. Jr., Layoff, T., Adams, R.N.: The effect of lithium ion on the mechanism of the polarographic reduction of benzil in dimethylformamide. J. Electrochem. Soc. 111, 1189–1190 (1964) CrossRefGoogle Scholar
  18. 18.
    Fuzinaga, T., Izatsu, K., Nomura, T.: Effect of metal ions on the polarographic reduction of organic compounds in dipolar aprotic solvents. J. Electroanal. Chem. 29, 203–209 (1971) Google Scholar
  19. 19.
    Astudillo, P.D., Tilburcio, J., Gonzalez, F.J.: The role of acids and bases on the electrochemical oxidation of hydroquinone: Hydrogen bonding interactions in acetonitrile. J. Electroanal. Chem. 604, 57–64 (2007) CrossRefGoogle Scholar
  20. 20.
    Xiaobo, J., Craig, E.B., Debbie, S.S., Andrew, J.W., Richard, G.C.: Electrode kinetic studies of the hydroquinone–benzoquinone system and the reaction between hydroquinone and ammonia in propylene carbonate: Application to the indirect electro analytical sensing of ammonia. J. Phys. Chem. C 111, 1496–1504 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MumbaiVidyanagari, Santacruz (E), MumbaiIndia

Personalised recommendations