Advertisement

Journal of Solution Chemistry

, Volume 38, Issue 8, pp 1015–1028 | Cite as

Thermal Conductivity of Aqueous K2CO3 Solutions at High Temperatures

  • Lala A. Akhmedova-Azizova
  • Ilmutdin M. Abdulagatov
Article

Abstract

Thermal conductivities of five aqueous K2CO3 solutions of (5, 10, 15, 20, and 25) mass-% have been measured with a concentric-cylinder (steady state) technique. Measurements were made at pressures slightly above the vapor saturation curve and at temperatures from (293.15 to 573.15) K. The total uncertainties of the thermal conductivity, temperature, and concentration measurements were estimated to be less than 2%, 30 mK, and 0.02%, respectively. A maximum in the thermal conductivity was found around 413 K. The measured values of thermal conductivity were compared with data reported in the literature and with values calculated from various prediction techniques. New correlation and prediction equations for the thermal conductivity of solutions studied here were obtained from the experimental data as a function of temperature and composition. The average absolute deviation (AAD) between the measured and predicted values of the thermal conductivity is 0.17%.

Keywords

Aqueous solutions Coaxial-cylinder technique Potassium carbonate Saturation curve Thermal conductivity Water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhundov, T.C., Iskenderov, A.I., Akhmedova, L.A.: Thermal conductivity of aqueous solutions of Ca(NO3)2. Izv. Vuzov, Neft Gas 3, 49–52 (1994) Google Scholar
  2. 2.
    Akhundov, T.C., Iskenderov, A.I., Akhmedova, L.A.: Thermal conductivity of aqueous solutions of Mg(NO3)2. Izv. Vuzov, Neft Gas 1, 56–58 (1995) Google Scholar
  3. 3.
    Abdulagatov, I.M., Akhmedova-Azizova, L.A., Azizov, N.D.: Thermal conductivity of binary aqueous NaBr and KBr and ternary H2O+NaBr+KBr solutions at temperatures from 294 to 577 K and pressures up to 40 MPa. J. Chem. Eng. Data 49, 1727–1737 (2004). doi: 10.1021/je049814b CrossRefGoogle Scholar
  4. 4.
    Abdulagatov, I.M., Akhmedova-Azizova, L.A., Azizov, N.D.: Thermal conductivity of aqueous Sr(NO3)2 and LiNO3 solutions at high temperatures and high pressures. J. Chem. Eng. Data 49, 688–704 (2004). doi: 10.1021/je0342466 CrossRefGoogle Scholar
  5. 5.
    Akhmedova-Azizova, L.A.: Thermal conductivity and viscosity of aqueous Mg(NO3)2, Sr(NO3)2, Ca(NO3)2, and Ba(NO3)2 solutions. J. Chem. Eng. Data 51, 2088–2090 (2006). doi: 10.1021/je060202w CrossRefGoogle Scholar
  6. 6.
    Akhmedova-Azizova, L.A., Babaeva, S.S.: Thermal conductivity of aqueous Na2CO3 solutions at high temperatures and high pressures. J. Chem. Eng. Data 53, 462–465 (2008). doi: 10.1021/je7005506 CrossRefGoogle Scholar
  7. 7.
    Riedel, L.: The heat conductivity of aqueous solutions of strong electrolytes. Chem. Ing. Tech. 23, 59–64 (1951). doi: 10.1002/cite.330230303 CrossRefGoogle Scholar
  8. 8.
    Abdulagatov, I.M., Magomedov, U.B.: Thermal conductivity of aqueous solutions of K2CO3 and NaI in the temperature range 298–473 K at pressures up to 100 MPa. In: Procedures 4th Asian Thermophysical Properties Conference, pp. 499–502. Tokyo (1995) Google Scholar
  9. 9.
    Kestin, J., Sengers, J.V., Kamgar-Parsi, B., Levelt Sengers, J.M.H.: Thermophysical properties of fluid H2O. J. Phys. Chem. Ref. Data 13, 175–189 (1984) CrossRefGoogle Scholar
  10. 10.
    Gershuni, G.Z.: Thermal convection in the space between vertical coaxial cylinders. Dok. Akad. Nauk USSR 86, 697–698 (1952) Google Scholar
  11. 11.
    Gonçalves, F.A., Kestin, J.: The viscosity of Na2CO3 and K2CO3 aqueous solutions in the range 20–60 °C. Int. J. Thermophys. 2, 315–322 (1981). doi: 10.1007/BF00498762 CrossRefGoogle Scholar
  12. 12.
    Aseyev, G.G.: Electrolytes. Properties of Solutions. Methods for Calculation of Multicomponent Systems and Experimental Data on Thermal Conductivity and Surface Tension. Begell-House, New York (1998) Google Scholar
  13. 13.
    Abdulagatov, I.M., Abdulagatov, A.I., Kamalov, A.N.: Thermophysical Properties of Pure Fluids and Aqueous Systems at High Temperatures and Pressures. Begell-House, New York (2005) Google Scholar
  14. 14.
    Krönert, P., Schuberthy, H.: Behavior of heat-conductivity of some phosphate-solutions and nitrate-solutions. Chem.-Thechn. 29, 552–563 (1977) Google Scholar
  15. 15.
    Vargaftik, N.B., Osminin, Y.P.: Thermal conductivity of aqueous salt, acid, and alkali solutions. Teploenergetika 7, 15–16 (1956) Google Scholar
  16. 16.
    Chiquillo, A.: Measurements of the relative thermal conductivity of aqueous salt solutions with a transient hot-wire method. Juris Druck and Verlag, Zurich (1967) Google Scholar
  17. 17.
    Losenicky, Z.: Thermal conductivity of aqueous solutions of alkali hydroxides. J. Phys. Chem. 73, 451–452 (1969). doi: 10.1021/j100722a036 CrossRefGoogle Scholar
  18. 18.
    Magomedov, U.B.: Thermal conductivity of binary and multicomponent aqueous solutions of inorganic substances at high parameters of state. Russ. High Temp. 39, 221–226 (2001). doi: 10.1023/A:1017518731726 CrossRefGoogle Scholar
  19. 19.
    Viswanath, D.S., Rao, M.B.: Thermal conductivity of liquids and its temperature dependence. J. Phys. D 3, 1444–1450 (1970). doi: 10.1088/0022-3727/3/10/309 CrossRefGoogle Scholar
  20. 20.
    Klaas, D.M., Viswanath, D.S.: A correlation for the prediction of thermal conductivity of liquids. Ind. Eng. Chem. Res. 37, 2064–2068 (1998). doi: 10.1021/ie9706830 CrossRefGoogle Scholar
  21. 21.
    Falkenhagen, H., Dole, M.: Die innere Reibung von elektrolytischen Losungen und ihre Deutung nach der Debyeschen Theorie. Z. Phys. 30, 611–622 (1929) Google Scholar
  22. 22.
    Onsager, L., Fuoss, R.M.: Irreversible processes in electrolytes. Diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes. J. Phys. Chem. 36, 2689–2778 (1932). doi: 10.1021/j150341a001 CrossRefGoogle Scholar
  23. 23.
    Onsager, L.: The theory of electrolytes. Z. Phys. 27, 388–392 (1926) Google Scholar
  24. 24.
    Debye, P., Hückel, H.: Bemerkungen zu einem Satze über die kataphoretische Wanderungsgeschwindigkeit suspendierter teilchen. Z. Phys. 25, 49–52 (1924) Google Scholar
  25. 25.
    Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929). doi: 10.1021/ja01385a012 CrossRefGoogle Scholar
  26. 26.
    Falkenhagen, H.: Theorie der Elektrolyte. S. Hirzel, Leipzig (1971) Google Scholar
  27. 27.
    Falkenhagen, H.: Quantitative limiting law of the viscosity of strong binary electrolytes. Z. Phys. 32, 745–764 (1931) Google Scholar
  28. 28.
    Abdulagatov, I.M., Magomedov, U.B.: Thermal conductivity of aqueous solutions of NaCl and KCl at high pressures. Int. J. Thermophys. 15, 401–413 (1994). doi: 10.1007/BF01563705 CrossRefGoogle Scholar
  29. 29.
    Abdulagatov, I.M., Magomedov, U.B.: Thermal conductivity of aqueous KI and KBr solutions at high temperatures and high pressures. J. Solution Chem. 30, 223–235 (2001). doi: 10.1023/A:1005223415475 CrossRefGoogle Scholar
  30. 30.
    Abdulagatov, I.M., Magomedov, U.B.: High pressure thermal conductivity of H2O+KI and H2O+KBr. In: Proc. of the 14th European Conference on Thermophysical Properties. Lyon–Villeurbanne, France (1996) Google Scholar
  31. 31.
    Abdulagatov, I.M., Azizov, N.D.: Thermal conductivity and viscosity of the aqueous K2SO4 solutions at temperatures from 298 to 573 K and at pressures up to 30 MPa. Int. J. Thermophys. 26, 593–635 (2005). doi: 10.1007/s10765-005-5567-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lala A. Akhmedova-Azizova
    • 1
  • Ilmutdin M. Abdulagatov
    • 2
  1. 1.Azerbaijan State Oil AcademyBakuAzerbaijan
  2. 2.Institute for Geothermal Problems of the Dagestan Scientific Center of the Russian Academy of SciencesMakhachkalaRussia

Personalised recommendations